



Approval body for construction products and types of construction

**Bautechnisches Prüfamt** 

An institution established by the Federal and Laender Governments



# **European Technical Assessment**

ETA-19/0850 of 29 November 2021

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

B+BTec Injection System BIS-PE GEN3 for concrete

Bonded fastener for use in concrete

B+BTec Munterij 8 4762 AH ZEVENBERGEN NIEDERLANDE

B+BTec, Plant 1

39 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

ETA-19/0850 issued on 17 April 2020



#### European Technical Assessment ETA-19/0850 English translation prepared by DIBt

Page 2 of 39 | 29 November 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



# European Technical Assessment ETA-19/0850

Page 3 of 39 | 29 November 2021

English translation prepared by DIBt

#### **Specific Part**

#### 1 Technical description of the product

The "B+BTec Injection system BIS-PE GEN3 for concrete" is a bonded anchor consisting of a cartridge with injection mortar Injection mortar BIS-PE GEN3 and a steel element according to Annex A3 and A5.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

# 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                                 | Performance                                        |
|------------------------------------------------------------------------------------------|----------------------------------------------------|
| Characteristic resistance to tension load (static and quasi-static loading)              | See Annex B 3, C 1 to C 5, C 7 to C 9, C 11 to C13 |
| Characteristic resistance to shear load (static and quasi-static loading)                | See Annex C 1, C 6, C 10, C 14                     |
| Displacements under short-term and long-term loading                                     | See Annex C 15 to C 17                             |
| Characteristic resistance and displacements for seismic performance categories C1 and C2 | See Annex C 18 to C 21                             |

#### 3.2 Hygiene, health and the environment (BWR 3)

| Essential characteristic                                 | Performance             |
|----------------------------------------------------------|-------------------------|
| Content, emission and/or release of dangerous substances | No performance assessed |



# European Technical Assessment ETA-19/0850

Page 4 of 39 | 29 November 2021

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

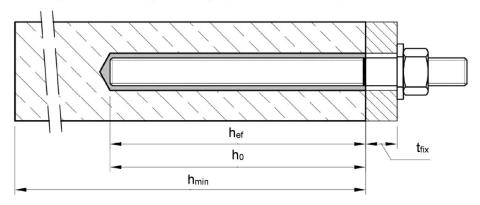
The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

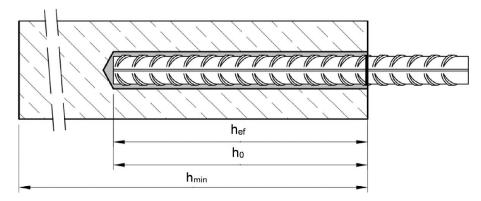
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 29 November 2021 by Deutsches Institut für Bautechnik

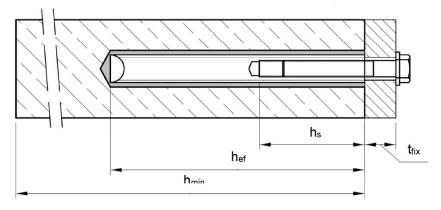
Dipl.-Ing. Beatrix Wittstock Head of Section


beglaubigt: Baderschneider




#### Installation threaded rod M8 up to M30

prepositioned installation or


push through installation (annular gap filled with mortar)



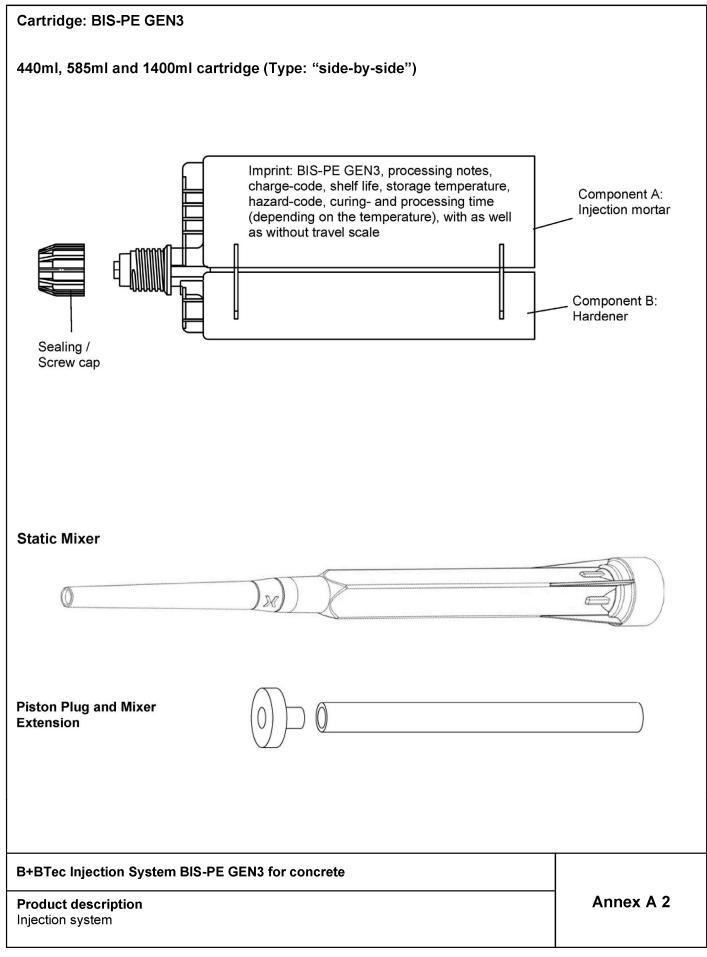
## Installation reinforcing bar Ø8 up to Ø32



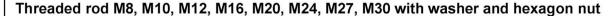
#### Installation internal threaded anchor rod IG-M6 up to IG-M20

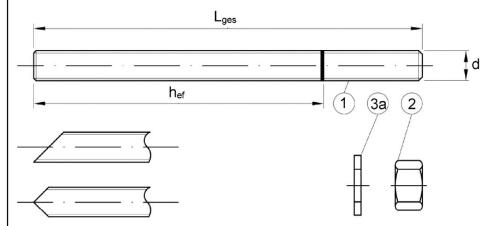


 $t_{fix}$  = thickness of fixture


h<sub>ef</sub> = effective anchorage depth

 $h_0$  = depth of drill hole

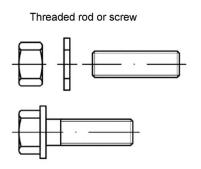

 $h_{min}$  = minimum thickness of member


| B+BTec Injection System BIS-PE GEN3 for concrete |           |
|--------------------------------------------------|-----------|
| Product description Installed condition          | Annex A 1 |












Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth







Marking: e.g. Marking Internal thread

Mark

M8 Thread size (Internal thread)
A4 additional mark for stainless steel

HCR additional mark for high-corrosion resistance steel

# Filling washer and mixer reduction nozzle for filling the annular gap between anchor rod and fixture





#### B+BTec Injection System BIS-PE GEN3 for concrete

#### **Product description**

Threaded rod, internal threaded rod and filling washer

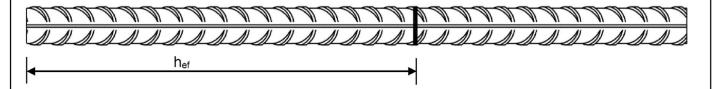
Annex A 3



| Та            | ıble A1: Mater                          | ials                                                                                                                                                     |                                                                  |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                     |                                                                           |
|---------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Parl          | Designation                             | Material                                                                                                                                                 |                                                                  |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                     |                                                                           |
| - z<br>- h    | inc plated ≥ 5<br>ot-dip galvanised ≥ 4 | acc. to EN ISO 683-4:25   µm acc. to EN ISO  0 µm acc. to EN ISO  15 µm acc. to EN ISO                                                                   | 4042<br>146                                                      | 2:2018 or<br>1:2009 and EN ISO 10684:                                                                                                                                                                                                                                                                  | 2004+AC:2009 or                                                                                                                                     |                                                                           |
| 3             |                                         | Property class                                                                                                                                           | 1700                                                             | Characteristic steel ultimate tensile strength                                                                                                                                                                                                                                                         | Characteristic steel yield strength                                                                                                                 | Elongation at fracture                                                    |
|               |                                         |                                                                                                                                                          | 4.6                                                              | f <sub>uk</sub> = 400 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                | f <sub>vk</sub> = 240 N/mm <sup>2</sup>                                                                                                             | A <sub>5</sub> > 8%                                                       |
| 1             | Threaded rod                            |                                                                                                                                                          | 4.8                                                              | f <sub>uk</sub> = 400 N/mm²                                                                                                                                                                                                                                                                            | f <sub>yk</sub> = 320 N/mm <sup>2</sup>                                                                                                             | A <sub>5</sub> > 8%                                                       |
|               | Tinodada roa                            | acc. to<br>EN ISO 898-1:2013                                                                                                                             |                                                                  | f <sub>uk</sub> = 500 N/mm²                                                                                                                                                                                                                                                                            | f <sub>yk</sub> = 300 N/mm <sup>2</sup>                                                                                                             | A <sub>5</sub> > 8%                                                       |
|               |                                         | EN 130 696-1.2013                                                                                                                                        | 5.8                                                              | f <sub>uk</sub> = 500 N/mm²                                                                                                                                                                                                                                                                            | f <sub>yk</sub> = 400 N/mm²                                                                                                                         | A <sub>5</sub> > 8%                                                       |
|               |                                         |                                                                                                                                                          | 8.8                                                              | f <sub>uk</sub> = 800 N/mm²                                                                                                                                                                                                                                                                            | f <sub>yk</sub> = 640 N/mm <sup>2</sup>                                                                                                             | A <sub>5</sub> ≥ 12% <sup>3)</sup>                                        |
|               |                                         | acc. to                                                                                                                                                  | 4                                                                | for anchor rod class 4.6 o                                                                                                                                                                                                                                                                             |                                                                                                                                                     |                                                                           |
| 2             | Hexagon nut                             | EN ISO 898-2:2012                                                                                                                                        | 5                                                                | for anchor rod class 5.6 o                                                                                                                                                                                                                                                                             | r 5.8                                                                                                                                               |                                                                           |
|               |                                         | Steel zinc plated ho                                                                                                                                     | 8<br>t-din                                                       | for anchor rod class 8.8 galvanised or sherardized                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                           |
| 3а            | Washer                                  |                                                                                                                                                          |                                                                  | EN ISO 7089:2000, EN ISC                                                                                                                                                                                                                                                                               | 7093:2000 or EN ISO                                                                                                                                 | 7094:2000)                                                                |
| 3b            | Filling washer                          |                                                                                                                                                          |                                                                  | galvanised or sherardized                                                                                                                                                                                                                                                                              | 1                                                                                                                                                   |                                                                           |
|               | Internal threaded                       | Property class                                                                                                                                           |                                                                  | Characteristic steel ultimate tensile strength                                                                                                                                                                                                                                                         | Characteristic steel yield strength                                                                                                                 | Elongation at fracture                                                    |
| 4 anchor rod  |                                         | acc. to                                                                                                                                                  | 5.8                                                              | f <sub>uk</sub> = 500 N/mm²                                                                                                                                                                                                                                                                            | f <sub>yk</sub> = 400 N/mm²                                                                                                                         | A <sub>5</sub> > 8%                                                       |
|               |                                         | EN ISO 898-1:2013                                                                                                                                        | 8.8                                                              | f <sub>uk</sub> = 800 N/mm²                                                                                                                                                                                                                                                                            | f <sub>yk</sub> = 640 N/mm²                                                                                                                         | A <sub>5</sub> > 8%                                                       |
| Stai          | inless steel A4 (Mate                   | rial 1.4401 / 1.4404 / 1                                                                                                                                 | .457                                                             | 1 / 1.4567 or 1.4541, acc. t<br>1 / 1.4362 or 1.4578, acc. t<br>r 1.4565, acc. to EN 10088                                                                                                                                                                                                             | o EN 10088-1:2014)                                                                                                                                  |                                                                           |
|               |                                         | Property class                                                                                                                                           |                                                                  | Characteristic steel ultimate tensile strength                                                                                                                                                                                                                                                         | Characteristic steel yield strength                                                                                                                 | Elongation at fracture                                                    |
| 1             | Threaded rod <sup>1)4)</sup>            |                                                                                                                                                          | 50                                                               | f <sub>uk</sub> = 500 N/mm²                                                                                                                                                                                                                                                                            | f <sub>yk</sub> = 210 N/mm²                                                                                                                         | A <sub>5</sub> ≥ 8%                                                       |
| •             | Timodada rod                            | acc. to                                                                                                                                                  | 70                                                               | f = 700 N/mm²                                                                                                                                                                                                                                                                                          | f = 450 N/mm2                                                                                                                                       |                                                                           |
| ENIS          |                                         | EN ISO 3506 1:3030                                                                                                                                       | 70                                                               | f <sub>uk</sub> = 700 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                | f <sub>yk</sub> = 450 N/mm <sup>2</sup>                                                                                                             | A <sub>5</sub> ≥ 12% <sup>3)</sup>                                        |
|               |                                         | EN ISO 3506-1:2020                                                                                                                                       |                                                                  | f <sub>uk</sub> = 800 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                | f <sub>yk</sub> = 450 N/mm <sup>2</sup>                                                                                                             | $A_5 \ge 12\%^{3}$ $A_5 \ge 12\%^{3}$                                     |
| 2             | Hexagon nut 1)4)                        | EN ISO 3506-1:2020<br>acc. to<br>EN ISO 3506-1:2020                                                                                                      | 80<br>50<br>70                                                   |                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                   |                                                                           |
|               | Hexagon nut <sup>1)4)</sup> Washer      | acc. to<br>EN ISO 3506-1:2020<br>A2: Material 1.4301 /<br>A4: Material 1.4401 /<br>HCR: Material 1.4529                                                  | 80<br>70<br>80<br>1.43<br>1.44<br>9 or 1                         | f <sub>uk</sub> = 800 N/mm <sup>2</sup><br>for anchor rod class 50<br>for anchor rod class 70                                                                                                                                                                                                          | f <sub>yk</sub> = 600 N/mm <sup>2</sup><br>541, acc. to EN 10088-<br>578, acc. to EN 10088-<br>: 2014                                               | A <sub>5</sub> ≥ 12% <sup>3)</sup> 1:2014 1:2014                          |
| 2<br>3a<br>3b |                                         | acc. to<br>EN ISO 3506-1:2020<br>A2: Material 1.4301 /<br>A4: Material 1.4401 /<br>HCR: Material 1.4529<br>(e.g.: EN ISO 887:20                          | 80<br>50<br>70<br>80<br>1.43<br>1.44<br>9 or 1<br>06, E          | f <sub>uk</sub> = 800 N/mm <sup>2</sup> for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 107 / 1.4311 / 1.4567 or 1.4 104 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISO orrosion resistance steel                                                | f <sub>yk</sub> = 600 N/mm <sup>2</sup><br>541, acc. to EN 10088-<br>578, acc. to EN 10088-<br>2014<br>7093:2000 or EN ISO                          | $A_5 \ge 12\%^{3}$ 1:2014  1:2014  7094:2000)                             |
| 3a<br>3b      | Washer Filling washer                   | acc. to<br>EN ISO 3506-1:2020<br>A2: Material 1.4301 /<br>A4: Material 1.4401 /<br>HCR: Material 1.4529<br>(e.g.: EN ISO 887:20                          | 50<br>70<br>80<br>1.43<br>1.44<br>9 or 1<br>06, E                | f <sub>uk</sub> = 800 N/mm <sup>2</sup> for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 107 / 1.4311 / 1.4567 or 1.4 104 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISO orrosion resistance steel Characteristic steel ultimate tensile strength | f <sub>yk</sub> = 600 N/mm <sup>2</sup> 541, acc. to EN 10088- 578, acc. to EN 10088- 2014 7093:2000 or EN ISO  Characteristic steel yield strength | A <sub>5</sub> ≥ 12% ³)  1:2014 1:2014 7094:2000)  Elongation at fracture |
| 3a            | Washer                                  | acc. to<br>EN ISO 3506-1:2020<br>A2: Material 1.4301 /<br>A4: Material 1.4401 /<br>HCR: Material 1.452!<br>(e.g.: EN ISO 887:20<br>Stainless steel A4, H | 80<br>50<br>70<br>80<br>1.43<br>1.44<br>9 or 1<br>06, E<br>igh c | f <sub>uk</sub> = 800 N/mm <sup>2</sup> for anchor rod class 50 for anchor rod class 70 for anchor rod class 80 07 / 1.4311 / 1.4567 or 1.4 04 / 1.4571 / 1.4362 or 1.4 1.4565, acc. to EN 10088-1 EN ISO 7089:2000, EN ISO orrosion resistance steel Characteristic steel                             | f <sub>yk</sub> = 600 N/mm <sup>2</sup> 541, acc. to EN 10088- 578, acc. to EN 10088- 2014 7093:2000 or EN ISO                                      | $A_5 \ge 12\%^{3}$ 1:2014  1:2014  7094:2000)                             |

<sup>&</sup>lt;sup>1)</sup> Property class 70 or 80 for anchor rods and hexagon nuts up to M24 and Internal threaded anchor rods up to IG-M16

<sup>&</sup>lt;sup>4)</sup> Property class 80 only for stainless steel A4 and HCR


| B+BTec Injection System BIS-PE GEN3 for concrete                     |           |
|----------------------------------------------------------------------|-----------|
| Product description Materials threaded rod and internal threaded rod | Annex A 4 |

<sup>&</sup>lt;sup>2)</sup> for IG-M20 only property class 50

 $<sup>^{3)}\,</sup>A_{5}$  > 8% fracture elongation if  $\underline{no}$  use for seismic performance category C2



Reinforcing bar  $\varnothing$  8,  $\varnothing$  10,  $\varnothing$  12,  $\varnothing$  14,  $\varnothing$  16,  $\varnothing$  20,  $\varnothing$  24,  $\varnothing$  25,  $\varnothing$  28,  $\varnothing$  32



- Minimum value of related rip area f<sub>R,min</sub> according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
   (d: Nominal diameter of the bar; h: Rip height of the bar)

#### Table A2: Materials

| Part  | Designation                    |                                                                                                                                  |  |  |  |
|-------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Reinf | orcing bars                    |                                                                                                                                  |  |  |  |
| 1     | EN 1007_1_1.7002+Δ(7010 ΔnnΔV( | Bars and de-coiled rods class B or C $f_{yk}$ and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$ |  |  |  |

| B+BTec Injection System BIS-PE GEN3 for concrete |           |
|--------------------------------------------------|-----------|
| Product description Materials reinforcing bar    | Annex A 5 |



| Specifications of intended use                                                                    |                                             |                              |                                             |                            |  |  |  |  |
|---------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------|---------------------------------------------|----------------------------|--|--|--|--|
| Anchorages subject to (Static                                                                     | and quasi-static lo                         | pads):                       |                                             |                            |  |  |  |  |
|                                                                                                   | for a working I                             | ife of 50 years              | for a working li                            | fe of 100 years            |  |  |  |  |
| Base material                                                                                     | Uncracked concrete                          | cracked concrete             | Uncracked concrete                          | cracked concrete           |  |  |  |  |
| Hammer drilling (HD), Hammer drilling with hollow drill bit (HDB) or compressed air drilling (CD) | Ø8 to                                       | o M30,<br>o Ø32,<br>o IG-M20 | M8 to M30,<br>Ø8 to Ø32,<br>IG-M6 to IG-M20 |                            |  |  |  |  |
| Diamond drilling (DD)                                                                             | M8 to M30,<br>Ø8 to Ø32,<br>IG-M6 to IG-M20 | No performance assessed      | M8 to M30,<br>Ø8 to Ø32,<br>IG-M6 to IG-M20 | No performance assessed    |  |  |  |  |
| Temperature Range:                                                                                |                                             | to +40 °C¹)<br>to +72 °C²)   |                                             | to +40 °C¹)<br>to +72 °C²) |  |  |  |  |

#### Anchorages subject to (Seismic action):

|                                                                                                   | for Performance Category C1                                            | for Performance Category C2                                          |  |  |  |  |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|
| Base material                                                                                     | Cracked and und                                                        | cracked concrete                                                     |  |  |  |  |
| Hammer drilling (HD), Hammer drilling with hollow drill bit (HDB) or compressed air drilling (CD) | M8 to M30,<br>Ø8 to Ø32                                                | M12 to M24                                                           |  |  |  |  |
| Diamond drilling (DD)                                                                             | No performance assessed                                                | No performance assessed                                              |  |  |  |  |
| Temperature Range:                                                                                | I: - 40 °C to +40 °C <sup>1)</sup> II: - 40 °C to +72 °C <sup>2)</sup> | I: -40 °C to +40 °C <sup>1)</sup> II: -40 °C to +72 °C <sup>2)</sup> |  |  |  |  |

<sup>1) (</sup>max long term temperature +24 °C and max short term temperature +40 °C)

#### Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.

#### Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
  - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
  - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
  - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

| B+BTec Injection System BIS-PE GEN3 for concrete |           |
|--------------------------------------------------|-----------|
| Intended Use<br>Specifications                   | Annex B 1 |

<sup>2) (</sup>max long term temperature +50 °C and max short term temperature +72 °C)

# Page 11 of European Technical Assessment ETA-19/0850 of 29 November 2021

English translation prepared by DIBt



#### Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

#### Installation:

- · Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB), compressed air (CD) or diamond drill mode (DD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

| B+BTec Injection System BIS-PE GEN3 for concrete |           |
|--------------------------------------------------|-----------|
| Intended Use<br>Specifications                   | Annex B 2 |



| Table B1: Installation parameters for threaded rod |                           |                            |      |     |                                 |                  |     |     |                                   |     |     |
|----------------------------------------------------|---------------------------|----------------------------|------|-----|---------------------------------|------------------|-----|-----|-----------------------------------|-----|-----|
| Anchor size                                        |                           |                            |      | M8  | M10                             | M12              | M16 | M20 | M24                               | M27 | M30 |
| Diameter of elemen                                 | t                         | d = d <sub>nom</sub>       | [mm] | 8   | 10                              | 12               | 16  | 20  | 24                                | 27  | 30  |
| Nominal drill hole di                              | ameter                    | d <sub>0</sub>             | [mm] | 10  | 12                              | 14               | 18  | 22  | 28                                | 30  | 35  |
| Effective embedmer                                 | at donth                  | h <sub>ef,min</sub>        | [mm] | 60  | 60                              | 70               | 80  | 90  | 96                                | 108 | 120 |
| Ellective ellibedillei                             | Effective embedment depth |                            | [mm] | 160 | 200                             | 240              | 320 | 400 | 480                               | 540 | 600 |
| Diameter of clearance hole in                      | Prepositioned ins         | tallation d <sub>f</sub> ≤ | [mm] | 9   | 12                              | 14               | 18  | 22  | 26                                | 30  | 33  |
| the fixture                                        | Push through i            | nstallation d <sub>f</sub> | [mm] | 12  | 14                              | 16               | 20  | 24  | 30                                | 33  | 40  |
| Maximum torque mo                                  | oment                     | max T <sub>inst</sub> ≤    | [Nm] | 10  | 20                              | 40 <sup>1)</sup> | 60  | 100 | 170                               | 250 | 300 |
| Minimum thickness of member                        |                           | h <sub>min</sub>           | [mm] | 1   | <sub>f</sub> + 30 m<br>: 100 mr |                  |     | I   | h <sub>ef</sub> + 2d <sub>0</sub> |     |     |
| Minimum spacing                                    |                           | s <sub>min</sub>           | [mm] | 40  | 50                              | 60               | 75  | 95  | 115                               | 125 | 140 |
| Minimum edge distance c <sub>min</sub>             |                           | [mm]                       | 35   | 40  | 45                              | 50               | 60  | 65  | 75                                | 80  |     |

<sup>1)</sup> Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

## Table B2: Installation parameters for rebar

| Anchor size                                 | Ø 8 <sup>1)</sup>       | Ø 10 <sup>1)</sup> | Ø 12                                | 2 <sup>1)</sup> | Ø 14 | Ø 16 | Ø 20 | Ø 24 <sup>1)</sup> | Ø 25 <sup>1)</sup> | Ø 28              | Ø 32  |     |     |
|---------------------------------------------|-------------------------|--------------------|-------------------------------------|-----------------|------|------|------|--------------------|--------------------|-------------------|-------|-----|-----|
| Diameter of element                         | d =<br>d <sub>nom</sub> | [mm]               | 8                                   | 10              | 12   |      | 14   | 16                 | 20                 | 24                | 25    | 28  | 32  |
| Nominal drill hole diameter                 | $d_0$                   | [mm]               | 10 12                               | 12 14           | 14   | 16   | 18   | 20                 | 25                 | 30 32             | 30 32 | 35  | 40  |
| Effective embedment depth                   | h <sub>ef,min</sub>     | [mm]               | 60                                  | 60              | 70   |      | 75   | 80                 | 90                 | 96                | 100   | 112 | 128 |
| Effective embedment depth                   | $h_{ef,max}$            | [mm]               | 160                                 | 200             | 240  | )    | 280  | 320                | 400                | 480               | 500   | 560 | 640 |
| Minimum thickness of member                 | h <sub>min</sub>        | [mm]               | h <sub>ef</sub> + 30 mm ≥<br>100 mm |                 |      |      |      |                    | h <sub>e</sub>     | + 2d <sub>0</sub> |       |     |     |
| Minimum spacing S <sub>min</sub> [mm] 40 50 |                         | 50                 | 60                                  |                 | 70   | 75   | 95   | 120                | 120                | 130               | 150   |     |     |
| Minimum edge distance                       | c <sub>min</sub>        | [mm]               | 35                                  | 40              | 45   |      | 50   | 50                 | 60                 | 70                | 70    | 75  | 85  |

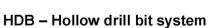
<sup>1)</sup> both nominal drill hole diameter can be used

#### Table B3: Installation parameters for Internal threaded anchor rod

| Anchor size                                | IG-M6                   | IG-M8 | IG-M10 | IG-M12                              | IG-M16 | IG-M20 |       |       |
|--------------------------------------------|-------------------------|-------|--------|-------------------------------------|--------|--------|-------|-------|
| Internal diameter of anchor rod            | d <sub>2</sub>          | [mm]  | 6      | 8                                   | 10     | 12     | 16    | 20    |
| Outer diameter of anchor rod <sup>1)</sup> | d = d <sub>nom</sub>    | [mm]  | 10     | 12                                  | 16     | 20     | 24    | 30    |
| Nominal drill hole diameter                | d <sub>0</sub>          | [mm]  | 12     | 14                                  | 18     | 22     | 28    | 35    |
| Effective embedment denth                  | h <sub>ef,min</sub>     | [mm]  | 60     | 70                                  | 80     | 90     | 96    | 120   |
| Effective embedment depth                  | h <sub>ef,max</sub>     |       | 200    | 240                                 | 320    | 400    | 480   | 600   |
| Diameter of clearance hole in the fixture  | d <sub>f</sub> ≤        | [mm]  | 7      | 9                                   | 12     | 14     | 18    | 22    |
| Maximum torque moment                      | max T <sub>inst</sub> ≤ | [Nm]  | 10     | 10                                  | 20     | 40     | 60    | 100   |
| Thread engagement length min/max           | I <sub>IG</sub>         | [mm]  | 8/20   | 8/20                                | 10/25  | 12/30  | 16/32 | 20/40 |
| Minimum thickness of member                | h <sub>min</sub>        | [mm]  |        | h <sub>ef</sub> + 30 mm<br>≥ 100 mm |        |        |       |       |
| Minimum spacing                            | s <sub>min</sub>        | [mm]  | 50     | 60                                  | 75     | 95     | 115   | 140   |
| Minimum edge distance                      | c <sub>min</sub>        | [mm]  | 40     | 45                                  | 50     | 60     | 65    | 80    |

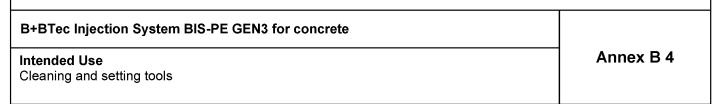
<sup>1)</sup> With metric threads according to EN 1993-1-8:2005+AC:2009

| B+BTec Injection System BIS-PE GEN3 for concrete |           |
|--------------------------------------------------|-----------|
| Intended Use Installation parameters             | Annex B 3 |




| Table B4        | Table B4: Parameter cleaning and setting tools |                                    |                                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                   |                          |     |
|-----------------|------------------------------------------------|------------------------------------|----------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------|-------------------|--------------------------|-----|
|                 |                                                |                                    |                                              |      | and the second s |                                         |                |                   |                          |     |
| Threaded<br>Rod | Rebar                                          | Internal<br>threaded<br>anchor rod | d <sub>0</sub> Drill bit - Ø HD, HDB, CD, DD | ı    | ь<br><b>h</b> - Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d <sub>b,min</sub><br>min.<br>Brush - Ø | Piston<br>plug | Installatio<br>of | n directio<br>piston plu |     |
| [mm]            | [mm]                                           | [mm]                               | [mm]                                         |      | [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [mm]                                    |                | 1                 | <b>→</b>                 | 1   |
| M8              | 8                                              |                                    | 10                                           | RB10 | 11,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10,5                                    |                | •                 |                          |     |
| M10             | 8 / 10                                         | IG-M6                              | 12                                           | RB12 | 13,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12,5                                    |                | No plug           | roguirod                 |     |
| M12             | 10 / 12                                        | IG-M8                              | 14                                           | RB14 | 15,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14,5                                    |                | No plug           | required                 |     |
|                 | 12                                             |                                    | 16                                           | RB16 | 17,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16,5                                    |                |                   |                          |     |
| M16             | 14                                             | IG-M10                             | 18                                           | RB18 | 20,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18,5                                    | VS18           |                   |                          |     |
|                 | 16                                             |                                    | 20                                           | RB20 | 22,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20,5                                    | VS20           |                   |                          |     |
| M20             |                                                | IG-M12                             | 22                                           | RB22 | 24,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22,5                                    | VS22           |                   |                          |     |
|                 | 20                                             |                                    | 25                                           | RB25 | 27,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25,5                                    | VS25           | h <sub>ef</sub> > | h <sub>ef</sub> >        |     |
| M24             |                                                | IG-M16                             | 28                                           | RB28 | 30,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28,5                                    | VS28           |                   |                          | all |
| M27             | 24 / 25                                        |                                    | 30                                           | RB30 | 31,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30,5                                    | VS30           | 250 mm            | 250 mm                   |     |
|                 | 24 / 25                                        |                                    | 32                                           | RB32 | 34,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32,5                                    | VS32           | ]                 |                          |     |
| M30             | 28                                             | IG-M20                             | 35                                           | RB35 | 37,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35,5                                    | VS35           | ]                 |                          |     |
|                 | 32                                             |                                    | 40                                           | RB40 | 43,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40,5                                    | VS40           |                   |                          |     |

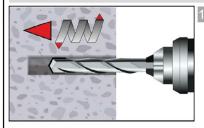
#### CAC - Rec. compressed air tool (min 6 bar)


Drill bit diameter (d<sub>0</sub>): all diameters





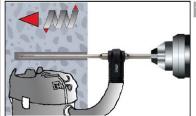
Drill bit diameter (d<sub>0</sub>): all diameters


The hollow drill bit system contains the Heller Duster Expert hollow drill bit and a class M vacuum with minimum negative pressure of 253 hPa <u>and</u> flow rate of minimum 150 m³/h (42 l/s).





#### Installation instructions


#### Drilling of the bore hole (HD, HDB, CD)

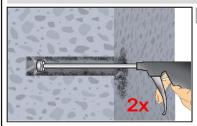


#### Hammer (HD) or compressed air drilling (CD)

Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2 or B3). Proceed with Step 2.

In case of aborted drill hole, the drill hole shall be filled with mortar.

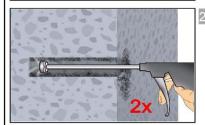



#### Hollow drill bit system (HDB) (see Annex B 3)

Drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2 or B3). This drilling system removes the dust and cleans the bore hole during drilling (all conditions). Proceed with Step 3.

In case of aborted drill hole, the drill hole shall be filled with mortar.

Attention! Standing water in the bore hole must be removed before cleaning.


#### CAC: Cleaning for dry, wet and water-filled bore holes with all diameter in uncracked and cracked concrete



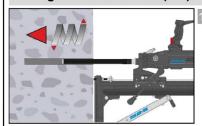
Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 4) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used



Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d<sub>b.min</sub> (Table B4) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension must be used.



Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 4) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.


After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

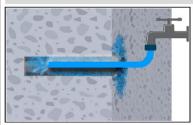
| B+BTec Injection System BIS-PE GEN3 for concrete |           |
|--------------------------------------------------|-----------|
| Intended Use Installation instructions           | Annex B 5 |



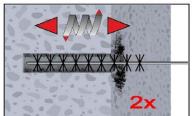
#### Installation instructions (continuation)

#### Drilling of the bore hole (DD)

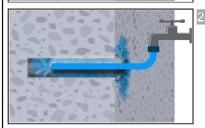



#### Diamond drilling (DD)

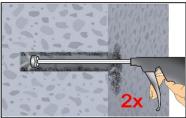
Drill with diamond drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3). Proceed with Step 2.


In case of aborted drill hole, the drill hole shall be filled with mortar.

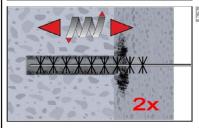
Attention! Standing water in the bore hole must be removed before cleaning.


SPCAC: Cleaning for dry, wet and water-filled bore holes with all diameter in uncracked and cracked concrete




Rinsing with water until clear water comes out.




Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush  $> d_{b,min}$  (Table B4) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension must be used.



Rinsing again with water until clear water comes out.

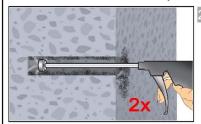


Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 4) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used

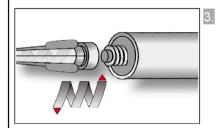


Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush  $> d_{b,min}$  (Table B4) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension must be used.

#### B+BTec Injection System BIS-PE GEN3 for concrete

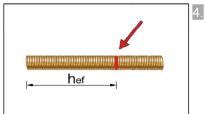

#### **Intended Use**

Installation instructions (continuation)

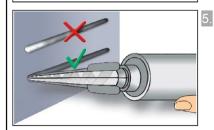

Annex B 6



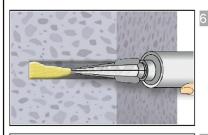
#### Installation instructions (continuation)



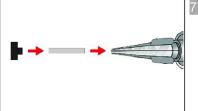

Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 4) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used.




Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool.


For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.




Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.

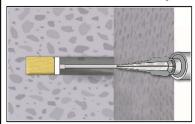


Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey or red colour.



Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Table B5.




Piston plugs shall be used according to Table B4 for the following applications:

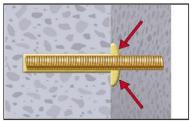
- Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d<sub>0</sub> ≥ 18 mm and embedment depth h<sub>ef</sub> > 250mm
- Overhead assembly (vertical upwards direction): Drill bit-Ø d<sub>0</sub> ≥ 18 mm
   Assemble mixing nozzle, mixer extension and piston plug before injecting mortar.

# B+BTec Injection System BIS-PE GEN3 for concrete Intended Use Installation instructions (continuation) Annex B 7

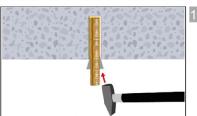



#### Installation instructions (continuation)




Insert piston plug to back of the hole and inject adhesive. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used.

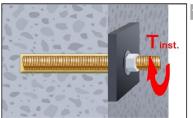
During injection the piston plug is naturally pushed out of the borehole by the back pressure of the mortar. Observe the gel-/ working times given in Table B5.




Push the fixing element into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment mark has reached the surface level.

The anchor shall be free of dirt, grease, oil or other foreign material.




After inserting the anchor, the annular gab between anchor rod and concrete, in case of a push through installation additionally also the fixture, must be complete filled with mortar. If excess mortar is not visible at the top of the hole, the requirement is not fulfilled and the application has to be renewed.



For overhead application the anchor rod shall be fixed (e.g. wedges) until the mortar has started to harden.



Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).



After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. In case of prepositioned installation the annular gab between anchor and fixture can be optional filled with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

| B+BTec Injection System BIS-PE GEN3 for concrete      |           |
|-------------------------------------------------------|-----------|
| Intended Use Installation instructions (continuation) | Annex B 8 |



| Table B5: | Ma                   | aximum wo | orking time and mini    | mum curing time                     |                                     |  |  |
|-----------|----------------------|-----------|-------------------------|-------------------------------------|-------------------------------------|--|--|
| Concrete  | Concrete temperature |           | Gelling<br>working time | Minimum curing time in dry concrete | Minimum curing time in wet concrete |  |  |
| 0 °C      | to                   | + 4 °C    | 90 min                  | 144 h                               | 288 h                               |  |  |
| + 5 °C    | to                   | + 9 °C    | 80 min                  | 48 h                                | 96 h                                |  |  |
| + 10 °C   | to                   | + 14 °C   | 60 min                  | 28 h                                | 56 h                                |  |  |
| + 15 °C   | to                   | + 19 °C   | 40 min                  | 18 h                                | 36 h                                |  |  |
| + 20 °C   | to                   | + 24 °C   | 30 min                  | 12 h                                | 24 h                                |  |  |
| + 25 °C   | to                   | + 34 °C   | 12 min                  | 9 h                                 | 18 h                                |  |  |
| + 35 °C   | to                   | + 39 °C   | 8 min                   | 6 h                                 | 12 h                                |  |  |
| +4        | O °C                 |           | 8 min                   | 4 h                                 | 8 h                                 |  |  |
| Cartridge | e temp               | erature   |                         | +5°C to +40°C                       |                                     |  |  |

| B+BTec Injection System BIS-PE GEN3 for concrete |           |
|--------------------------------------------------|-----------|
| Intended Use Curing time                         | Annex B 9 |



| Т                                      | Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods |                                |                        |       |         |         |      |     |     |     |      |      |
|----------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------|------------------------|-------|---------|---------|------|-----|-----|-----|------|------|
| Si                                     | ze                                                                                                       |                                |                        |       | M8      | M10     | M12  | M16 | M20 | M24 | M27  | M30  |
| Cr                                     | oss section area                                                                                         |                                | A <sub>s</sub>         | [mm²] | 36,6    | 58      | 84,3 | 157 | 245 | 353 | 459  | 561  |
| Cr                                     | naracteristic tensi                                                                                      | on resistance, Steel failu     | re 1)                  |       |         | •       |      |     | •   |     |      |      |
| Ste                                    | eel, Property class                                                                                      | 4.6 and 4.8                    | N <sub>Rk,s</sub>      | [kN]  | 15 (13) | 23 (21) | 34   | 63  | 98  | 141 | 184  | 224  |
| Ste                                    | eel, Property class                                                                                      | 5.6 and 5.8                    | N <sub>Rk,s</sub>      | [kN]  | 18 (17) | 29 (27) | 42   | 78  | 122 | 176 | 230  | 280  |
| Ste                                    | eel, Property class                                                                                      | 8.8                            | N <sub>Rk,s</sub>      | [kN]  | 29 (27) | 46 (43) | 67   | 125 | 196 | 282 | 368  | 449  |
| Sta                                    | ainless steel A2, A                                                                                      | 4 and HCR, class 50            | N <sub>Rk,s</sub>      | [kN]  | 18      | 29      | 42   | 79  | 123 | 177 | 230  | 281  |
| Sta                                    | ainless steel A2, A4                                                                                     | 4 and HCR, class 70            | N <sub>Rk,s</sub>      | [kN]  | 26      | 41      | 59   | 110 | 171 | 247 | _3)  | _3)  |
| Sta                                    | ainless steel A4 an                                                                                      | d HCR, class 80                | N <sub>Rk,s</sub>      | [kN]  | 29      | 46      | 67   | 126 | 196 | 282 | _3)  | _3)  |
| Cr                                     | naracteristic tensi                                                                                      | on resistance, Partial fac     | tor <sup>2)</sup>      |       |         |         |      |     |     |     |      |      |
| Ste                                    | Steel, Property class 4.6 and 5.6 $\gamma_{Ms,N}$ [-] 2,0                                                |                                |                        |       |         |         |      |     |     |     |      |      |
| Ste                                    | eel, Property class                                                                                      | 4.8, 5.8 and 8.8               | γMs,N                  | [-]   |         |         |      | 1,  | 5   |     |      |      |
| Sta                                    | ainless steel A2, A                                                                                      | 4 and HCR, class 50            | $\gamma_{Ms,N}$        | [-]   |         |         |      | 2,8 | 6   |     |      |      |
| Sta                                    | Stainless steel A2, A4 and HCR, class 70 $\gamma_{Ms,N}$ [-] 1,87                                        |                                |                        |       |         |         |      |     |     |     |      |      |
| $\vdash$                               | Stainless steel A4 and HCR, class 80 $\gamma_{Ms,N}$ [-] 1,6                                             |                                |                        |       |         |         |      |     |     |     |      |      |
| Cr                                     | naracteristic shear                                                                                      | r resistance, Steel failure    |                        |       |         |         |      | Γ   | ı   |     |      |      |
| ے                                      | Steel, Property cla                                                                                      | ass 4.6 and 4.8                | V <sup>0</sup> Rk,s    | [kN]  | 9 (8)   | 14 (13) | 20   | 38  | 59  | 85  | 110  | 135  |
| arm                                    | Steel, Property cla                                                                                      | ass 5.6 and 5.8                | V <sup>0</sup> Rk,s    | [kN]  | 11 (10) | 17 (16) | 25   | 47  | 74  | 106 | 138  | 168  |
| eve                                    | Steel, Property cla                                                                                      | ass 8.8                        | V <sup>0</sup> Rk,s    | [kN]  | 15 (13) | 23 (21) | 34   | 63  | 98  | 141 | 184  | 224  |
| l m                                    | Stainless steel A2                                                                                       | 2, A4 and HCR, class 50        | V <sup>0</sup> Rk,s    | [kN]  | 9       | 15      | 21   | 39  | 61  | 88  | 115  | 140  |
| Without lever                          | Stainless steel A2                                                                                       | 2, A4 and HCR, class 70        | V <sup>0</sup> Rk,s    | [kN]  | 13      | 20      | 30   | 55  | 86  | 124 | _3)  | _3)  |
| >                                      | Stainless steel A4                                                                                       | and HCR, class 80              | V <sup>0</sup> Rk,s    | [kN]  | 15      | 23      | 34   | 63  | 98  | 141 | _3)  | _3)  |
|                                        | Steel, Property cla                                                                                      | ass 4.6 and 4.8                | M <sup>0</sup> Rk,s    | [Nm]  | 15 (13) | 30 (27) | 52   | 133 | 260 | 449 | 666  | 900  |
| arm                                    | Steel, Property cla                                                                                      |                                | M <sup>0</sup> Rk,s    | [Nm]  | 19 (16) | 37 (33) | 65   | 166 | 324 | 560 | 833  | 1123 |
|                                        | Steel, Property cla                                                                                      | ass 8.8                        | M <sup>0</sup> Rk,s    | [Nm]  | 30 (26) | 60 (53) | 105  | 266 | 519 | 896 | 1333 | 1797 |
| Vith lever                             | Stainless steel A2                                                                                       | , A4 and HCR, class 50         | M <sup>0</sup> Rk,s    | [Nm]  | 19      | 37      | 66   | 167 | 325 | 561 | 832  | 1125 |
| ×                                      | Stainless steel A2                                                                                       | , A4 and HCR, class 70         | M <sup>0</sup> Rk,s    | [Nm]  | 26      | 52      | 92   | 232 | 454 | 784 | _3)  | _3)  |
|                                        | Stainless steel A4                                                                                       | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]                   | 30    | 59      | 105     | 266  | 519 | 896 | _3) | _3)  |      |
| Cr                                     | naracteristic shea                                                                                       | r resistance, Partial facto    | r <sup>2)</sup>        |       |         |         |      |     |     |     |      |      |
| Ste                                    | eel, Property class                                                                                      | 4.6 and 5.6                    | $\gamma_{\text{Ms,V}}$ | [-]   |         |         |      | 1,6 | 7   |     |      |      |
| Steel, Property class 4.8, 5.8 and 8.8 |                                                                                                          |                                |                        | [-]   |         | 1,25    |      |     |     |     |      |      |
| Sta                                    | ainless steel A2, A                                                                                      | 4 and HCR, class 50            | $\gamma_{Ms,V}$        | [-]   |         |         |      | 2,3 | 8   |     |      |      |
| Sta                                    | ainless steel A2, A                                                                                      | 4 and HCR, class 70            | $\gamma_{Ms,V}$        | [-]   |         |         |      | 1,5 | 6   |     |      |      |
| Sta                                    | Stainless steel A4 and HCR, class 80 $\gamma_{Ms,V}$ [-] 1,33                                            |                                |                        |       |         |         |      |     |     |     |      |      |

<sup>&</sup>lt;sup>1)</sup> Values are only valid for the given stress area A<sub>s</sub>. Values in brackets are valid for undersized threaded rods with smaller stress area A<sub>s</sub> for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

<sup>3)</sup> Anchor type not part of the ETA

| B+BTec Injection System BIS-PE GEN3 for concrete                                                            |           |
|-------------------------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods | Annex C 1 |

<sup>2)</sup> in absence of national regulation



| Table C2:        | Characteristic v              | alues for C        | oncrete co | ne failure and Splitting with all kind                 |
|------------------|-------------------------------|--------------------|------------|--------------------------------------------------------|
| Anchor           |                               |                    |            | All Anchor type and sizes                              |
| Concrete cone f  | ailure                        |                    |            |                                                        |
| Uncracked concr  | ete                           | k <sub>ucr,N</sub> | [-]        | 11,0                                                   |
| Cracked concrete | •                             | k <sub>cr,N</sub>  | [-]        | 7,7                                                    |
| Edge distance    |                               | c <sub>cr,N</sub>  | [mm]       | 1,5 h <sub>ef</sub>                                    |
| Axial distance   |                               | s <sub>cr,N</sub>  | [mm]       | 2 c <sub>cr,N</sub>                                    |
| Splitting        |                               |                    | <u> </u>   |                                                        |
|                  | h/h <sub>ef</sub> ≥ 2,0       |                    |            | 1,0 h <sub>ef</sub>                                    |
| Edge distance    | 2,0 > h/h <sub>ef</sub> > 1,3 | c <sub>cr,sp</sub> | [mm]       | $2 \cdot h_{ef} \left( 2,5 - \frac{h}{h_{ef}} \right)$ |
|                  | h/h <sub>ef</sub> ≤ 1,3       |                    |            | 2,4 h <sub>ef</sub>                                    |
| Axial distance   |                               | s <sub>cr,sp</sub> | [mm]       | 2 c <sub>cr,sp</sub>                                   |

| B+BTec Injection System BIS-PE GEN3 for concrete                                                   |           |
|----------------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values for Concrete cone failure and Splitting with all kind of action | Annex C 2 |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | racteristic va<br>on for a work    |                        |               | ls und                                             | der st    | atic a  | and q   | uasi-    | static  |            |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------|---------------|----------------------------------------------------|-----------|---------|---------|----------|---------|------------|---------|
| Anchor size threaded ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d                                  |                        |               | M8                                                 | M10       | M12     | M16     | M20      | M24     | M27        | M30     |
| Steel failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                        |               |                                                    | •         |         |         |          |         |            |         |
| Characteristic tension res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | istance                            | N <sub>Rk,s</sub>      | [kN]          | A <sub>s</sub> ⋅ f <sub>uk</sub> (or see Table C1) |           |         |         |          |         |            |         |
| Partial factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | $\gamma_{Ms,N}$        | [-]           |                                                    |           |         | see Ta  | able C1  |         |            |         |
| Combined pull-out and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | concrete failure                   | _                      | •             |                                                    |           |         |         |          |         |            |         |
| Characteristic bond resist (CD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ance in uncracke                   | d concrete C20         | /25 in hamı   | mer dril                                           | led hol   | es (HD  | ) and c | ompres   | ssed ai | r drilled  | l holes |
| Gemperature   Gemperature | Dry, wet                           | <sup>τ</sup> Rk,ucr    | [N/mm²]       | 20                                                 | 20        | 19      | 19      | 18       | 17      | 16         | 16      |
| d g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | flooded bore<br>hole               | TXX,dGI                |               | 15                                                 | 15        | 15      | 14      | 13       | 13      | 12         | 12      |
| Characteristic bond resist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ance in uncracke                   | d concrete C20         | /25 in hamı   | ner dril                                           | led hol   | es with | hollow  | drill bi | t (HDB) | )          |         |
| ଞ୍ <u></u> l: 40°C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dry, wet                           |                        |               | 17                                                 | 16        | 16      | 16      | 15       | 14      | 14         | 13      |
| em                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | concrete                           |                        | FN1/ 27       | 14                                                 | 14        | 14      | 13      | 13       | 12      | 12         | 11      |
| ta es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | flooded bore                       | <sup>τ</sup> Rk,ucr    | [N/mm²]       | 16                                                 | 16        | 16      | 15      | 15       | 14      | 14         | 13      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | hole                               |                        |               | 14                                                 | 14        | 14      | 13      | 13       | 12      | 12         | 11      |
| Characteristic bond resist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ⊥<br>ance in cracked o             | oncrete C20/25         | in hamme      |                                                    |           |         |         |          |         |            |         |
| and with hollow drill bit (H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | <u> </u>               | <u> </u>      | 1                                                  | 1         |         | '<br>   |          |         |            |         |
| II: 72°C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dry, wet concrete and              | <sup>τ</sup> Rk,cr     | [N/mm²]       | 7,0                                                | 7,0       | 8,5     | 8,5     | 8,5      | 8,5     | 8,5        | 8,5     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | flooded bore<br>hole               |                        |               | 6,0                                                | 6,0       | 7,0     | 7,0     | 7,0      | 7,0     | 7,0        | 7,0     |
| Reduction factor $\psi^0_{sus}$ in holes (CD) and with hollow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | racked concrete        | : C20/25 in   | hamme                                              | er drille | d holes | s (HD), | compre   | essed a | air drille | ed      |
| Temperature ange II: 72°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dry, wet concrete and flooded bore | Ψ <sup>0</sup> sus [-] |               | [-] c                                              |           |         |         | .80      |         |            |         |
| II: 72°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hole                               |                        |               | 0,68                                               |           |         |         |          |         |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | C25/30                 |               |                                                    |           |         |         | 02       |         |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | C30/37                 |               |                                                    |           |         |         | 04       |         |            |         |
| Increasing factors for con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | crete                              | C35/45<br>C40/50       |               |                                                    |           |         |         | 07<br>08 |         |            |         |
| <sup>↑</sup> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | C45/55                 |               |                                                    |           |         |         | 09       |         |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | C50/60                 |               |                                                    |           |         |         | 10       |         |            |         |
| Concrete cone failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    | 1 =                    |               | I                                                  |           |         | • ,     |          |         |            |         |
| Relevant parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                        |               |                                                    |           |         | see Ta  | able C2  |         |            |         |
| Splitting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                        |               |                                                    |           |         |         |          |         |            |         |
| Relevant parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                        |               |                                                    |           |         | see Ta  | able C2  |         |            |         |
| Installation factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | _                      |               |                                                    |           |         |         |          |         |            |         |
| for dry and wet concrete (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | $\gamma_{inst}$        | [-]           |                                                    |           |         |         | ,0       |         |            |         |
| for flooded bore hole (HD;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HDB, CD)                           | - met                  | ''            |                                                    |           |         | 1       | ,2       |         |            |         |
| B+BTec Injection Syst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tem BIS-PE GE                      | N3 for concret         | te            |                                                    |           |         |         |          |         |            |         |
| Performances<br>Characteristic values of te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsion loads under                  | static and quasi       | -static actio | n                                                  |           |         |         |          | Anne    | x C 3      | }       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                        |               |                                                    |           |         |         | -        |         |            |         |



| Anchor size threaded r                                    | od                    |                         |              | M8        | M10     | M12                 | M16                 | M20       | M24        | M27       | M30    |
|-----------------------------------------------------------|-----------------------|-------------------------|--------------|-----------|---------|---------------------|---------------------|-----------|------------|-----------|--------|
| Steel failure                                             |                       | _                       |              |           |         |                     |                     |           |            |           |        |
| Characteristic tension re                                 | sistance              | $N_{Rk,s}$              | [kN]         |           |         | $A_{s} \cdot f_{l}$ | <sub>uk</sub> (or s | ee Tab    | le C1)     |           |        |
| Partial factor                                            |                       | $\gamma_{Ms,N}$         | [-]          |           |         |                     | see Ta              | able C1   |            |           |        |
| Combined pull-out and                                     | concrete failure      | •                       | '            |           |         |                     |                     |           |            |           |        |
| Characteristic bond resis (CD)                            | stance in uncracke    | ed concrete C2          | 0/25 in hamr | ner dril  | led hol | es (HD              | ) and c             | ompres    | ssed ai    | r drilled | l hole |
| Lemberature range II: 40°C/24°C                           | Dry, wet concrete and | TDI 400                 | [N/mm²]      | 20        | 20      | 19                  | 19                  | 18        | 17         | 16        | 16     |
| ac<br>E<br>E<br>II: 72°C/50°C                             | flooded bore<br>hole  | <sup>τ</sup> Rk,ucr,100 |              | 15        | 15      | 15                  | 14                  | 13        | 13         | 12        | 12     |
| Characteristic bond resis                                 | stance in uncracke    | ed concrete C2          | 0/25 in hamr | ner dril  | led hol | es with             | hollow              | drill bit | t (HDB     | )         |        |
| º I: 40°C/24°C                                            | Dry, wet              |                         |              | 17        | 16      | 16                  | 16                  | 15        | 14         | 14        | 13     |
| H: 40°C/24°C   H: 72°C/50°C   H: 72°C/50°C   H: 72°C/50°C | concrete              | <sup>τ</sup> Rk,ucr,100 | [N/mm²]      | 14        | 14      | 14                  | 13                  | 13        | 12         | 12        | 11     |
| ii: 72°C/50°C                                             | flooded bore          |                         |              | 16        | 16      | 16                  | 15                  | 15        | 14         | 14        | 13     |
| II: 72°C/50°C hole                                        |                       |                         |              | 14        | 14      | 14                  | 13                  | 13        | 12         | 12        | 11     |
| Characteristic bond resis                                 |                       | concrete C20/2          | 5 in hamme   | r drilled | holes   | (HD) ,              | compre              | essed a   | air drille | ed holes  | s (CD  |
| Temperature  I: 40°C/24°C  II: 72°C/50°C                  | Dry, wet concrete and | 7                       | [N/mm²]      | 6,5       | 6,5     | 7,5                 | 7,5                 | 7,5       | 7,5        | 7,5       | 7,5    |
| قر ية<br>E II: 72°C/50°C                                  | flooded bore<br>hole  | <sup>τ</sup> Rk,cr,100  | [(4///////   | 5,5       | 5,5     | 6,5                 | 6,5                 | 6,5       | 6,5        | 6,5       | 6,5    |
|                                                           | •                     | C25/30                  | •            | 1,02      |         |                     |                     |           |            |           |        |
|                                                           |                       | C30/37                  |              |           |         |                     | 1,                  | 04        |            |           |        |
| Increasing factors for co                                 | ncrete                | C35/45                  |              |           |         |                     | 1,                  | 07        |            |           |        |
| $\Psi_{\mathbf{c}}$                                       |                       | C40/50                  |              |           |         |                     | 1,                  | 80        |            |           |        |
|                                                           |                       | C45/55                  |              |           |         |                     | 1,                  | 09        |            |           |        |
|                                                           |                       | C50/60                  |              |           |         |                     | 1,                  | 10        |            |           |        |
| Concrete cone failure                                     |                       |                         |              |           |         |                     |                     |           |            |           |        |
| Relevant parameter                                        |                       |                         |              |           |         |                     | see Ta              | ble C2    |            |           |        |
| Splitting                                                 |                       |                         |              |           |         |                     |                     |           |            |           |        |
| Relevant parameter                                        |                       |                         |              |           |         |                     | see Ta              | ble C2    |            |           |        |
| Installation factor                                       |                       | 1                       |              |           |         |                     |                     |           |            |           |        |
| for dry and wet concrete                                  |                       | 1                       |              |           |         | 1                   | ,0                  |           |            |           |        |
| for flooded bore hole (HI                                 | ·                     | — γ <sub>inst</sub> [-] | 1,2          |           |         |                     |                     |           |            |           |        |

| B+BTec Injection System BIS-PE GEN3 for concrete                                         |           |
|------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of tension loads under static and quasi-static action | Annex C 4 |



| Table                |                                   | racteristic va<br>on for a work    |                         |                   |          |          | atic a                         | ınd q               | uasi-   | static |       |     |  |
|----------------------|-----------------------------------|------------------------------------|-------------------------|-------------------|----------|----------|--------------------------------|---------------------|---------|--------|-------|-----|--|
| Ancho                | r size threaded ro                | d                                  |                         |                   | M8       | M10      | M12                            | M16                 | M20     | M24    | M27   | M30 |  |
| Steel fa             |                                   |                                    |                         |                   |          |          |                                |                     |         |        |       |     |  |
| Charac               | teristic tension res              | istance                            | N <sub>Rk,s</sub>       | [kN]              |          |          | A <sub>s</sub> ·f <sub>u</sub> | <sub>uk</sub> (or s | ee Tab  | le C1) |       |     |  |
| Partial 1            | factor                            |                                    | γ <sub>Ms,N</sub>       | [-]               |          |          |                                | see Ta              | able C1 |        |       |     |  |
|                      | ned pull-out and                  | concrete failure                   |                         |                   | ars      |          |                                |                     |         |        |       |     |  |
|                      | teristic bond resist              |                                    |                         |                   |          | lled hol | es (DD                         | ))                  |         |        |       |     |  |
|                      |                                   |                                    |                         |                   |          |          | (                              | ,<br>               |         |        |       |     |  |
| Temperature<br>range | l: 40°C/24°C                      | Dry, wet concrete and flooded bore | <sup>T</sup> Rk,ucr     | [N/mm²]           | 15       | 14       | 14                             | 13                  | 12      | 12     | 11    | 11  |  |
|                      | II: 72°C/50°C                     | hole                               |                         |                   | 12       | 12       | 11                             | 10                  | 9,5     | 9,5    | 9,0   | 9,0 |  |
| Reduct               | ion factor ψ <sup>0</sup> sus in  | uncracked concr                    | ete C20/25 in di        | amond drill       | ed hole  | es (DD)  |                                |                     |         |        |       |     |  |
| nperature<br>range   | l: 40°C/24°C                      |                                    |                         |                   |          | 0,       | 77                             |                     |         |        |       |     |  |
| Temperature<br>range | II: 72°C/50°C                     | flooded bore<br>hole               | Ψ <sup>0</sup> sus      | [-]               |          |          |                                | 0,                  | 72      |        |       |     |  |
|                      |                                   | 1                                  | C25/30                  | 1                 |          |          |                                | 1,                  | 04      |        |       |     |  |
|                      |                                   |                                    | C30/37                  |                   |          |          |                                | 1,                  | 08      |        |       |     |  |
| Increas              | sing factors for con-             | crete                              | C35/45                  |                   |          |          |                                | 1,                  | 12      |        |       |     |  |
| Ψс                   |                                   |                                    | C40/50                  |                   |          |          |                                | 1,                  | ,15     |        |       |     |  |
|                      |                                   |                                    | C45/55                  |                   |          |          |                                |                     | 17      |        |       |     |  |
|                      |                                   |                                    | C50/60                  |                   |          |          |                                | 1,                  | 19      |        |       |     |  |
|                      | ned pull-out and o                |                                    |                         |                   |          |          | (0.0                           |                     |         |        |       |     |  |
|                      | teristic bond resist              | ance in uncracke<br>T              | ed concrete C20         | /25 in diam∈<br>⊺ | ond dri  | lled hol | es (DD                         | ))<br>              |         | Ι      |       |     |  |
| Temperature<br>range | I: 40°C/24°C                      | Dry, wet concrete and              | <sup>τ</sup> Rk,ucr,100 | [N/mm²]           | 15       | 14       | 14                             | 13                  | 12      | 12     | 11    | 11  |  |
| Temp                 | II: 72°C/50°C                     | flooded bore<br>hole               | TXX,dGI, 100            | []                | 11       | 11       | 10                             | 10                  | 9,5     | 9,0    | 8,5   | 8,5 |  |
|                      |                                   |                                    | C25/30                  |                   |          |          |                                |                     | 04      |        |       |     |  |
|                      |                                   |                                    | C30/37                  |                   |          |          |                                | 1,                  | 80      |        |       |     |  |
| Increas              | sing factors for con-             | crete                              | C35/45                  |                   |          |          |                                |                     | 12      |        |       |     |  |
| Ψс                   |                                   |                                    | C40/50                  |                   |          |          |                                |                     | 15      |        |       |     |  |
|                      |                                   |                                    | C45/55                  |                   |          |          |                                |                     | 17      |        |       |     |  |
| Comme                | ete cone failure                  |                                    | C50/60                  |                   |          |          |                                | 1,                  | 19      |        |       |     |  |
|                      | nt parameter                      |                                    |                         |                   |          |          |                                | see Ta              | hle Ca  | )      |       |     |  |
| Splittin             | •                                 |                                    |                         |                   | <u> </u> |          |                                | 3CC 18              | 1DIC UZ | •      |       |     |  |
|                      | nt parameter                      |                                    |                         |                   |          |          |                                | see Ta              | ble C2  | )      |       |     |  |
|                      | ation factor                      |                                    |                         |                   | <u> </u> |          |                                |                     | 02      | -      |       |     |  |
|                      | and wet concrete (                | DD)                                | 1                       |                   |          |          |                                | 1                   | ,0      |        |       |     |  |
|                      | ded bore hole (DD)                |                                    | <sup>γ</sup> inst       | [-]               |          | 1,2      |                                |                     |         | 1,4    |       |     |  |
| R+RT                 | ec Injection Syst                 | em BIS-PF GF                       | N3 for concre           | te.               |          |          |                                |                     |         |        |       |     |  |
| Perfor               | rmances<br>cteristic values of te |                                    |                         |                   | n        |          |                                |                     |         | Anne   | x C 5 | ,   |  |



| Anchor size threaded rod                                                                                                |                     |          | M8                                                                            | M10 | M12     | M16                               | M20     | M24     | M27  | M30    |
|-------------------------------------------------------------------------------------------------------------------------|---------------------|----------|-------------------------------------------------------------------------------|-----|---------|-----------------------------------|---------|---------|------|--------|
| Steel failure without lever arm                                                                                         |                     | •        |                                                                               |     | •       | •                                 |         |         |      |        |
| Characteristic shear resistance<br>Steel, strength class 4.6, 4.8 and 5.6,<br>5.8                                       | V <sup>0</sup> Rk,s | [kN]     |                                                                               |     | 0,6 •   | A <sub>s</sub> ·f <sub>uk</sub>   | (or see | Table C | 1)   |        |
| Characteristic shear resistance<br>Steel, strength class 8.8<br>Stainless Steel A2, A4 and HCR, all<br>strength classes | V <sup>0</sup> Rk,s | [kN]     | 0,5 ⋅ A <sub>s</sub> ⋅ f <sub>uk</sub> (or see Table C1)                      |     |         |                                   |         |         |      |        |
| Partial factor                                                                                                          | $\gamma_{Ms,V}$     | [-]      | see Table C1                                                                  |     |         |                                   |         |         |      |        |
| Ductility factor                                                                                                        | k <sub>7</sub>      | [-]      | 1,0                                                                           |     |         |                                   |         |         |      |        |
| Steel failure with lever arm                                                                                            |                     | <u> </u> |                                                                               |     |         |                                   |         |         |      |        |
| Characteristic bending moment                                                                                           | M <sup>0</sup> Rk,s | [Nm]     |                                                                               |     | 1,2 • \ | W <sub>el</sub> • f <sub>uk</sub> | (or see | Table C | :1)  |        |
| Elastic section modulus                                                                                                 | W <sub>el</sub>     | [mm³]    | 31                                                                            | 62  | 109     | 277                               | 541     | 935     | 1387 | 1874   |
| Partial factor                                                                                                          | γ <sub>Ms,V</sub>   | [-]      |                                                                               |     |         | see                               | Table C | 1       |      |        |
| Concrete pry-out failure                                                                                                |                     |          |                                                                               |     |         |                                   |         |         |      |        |
| Factor                                                                                                                  | k <sub>8</sub>      | [-]      |                                                                               |     |         |                                   | 2,0     |         |      |        |
| Installation factor                                                                                                     | γinst               | [-]      |                                                                               |     |         |                                   | 1,0     |         |      |        |
| Concrete edge failure                                                                                                   |                     |          |                                                                               |     |         |                                   |         |         |      |        |
| Effective length of fastener                                                                                            | I <sub>f</sub>      | [mm]     | nm] min(h <sub>ef</sub> ; 12 · d <sub>nom</sub> ) min(h <sub>ef</sub> ; 300mm |     |         |                                   |         |         |      | 300mm) |
| Outside diameter of fastener                                                                                            | d <sub>nom</sub>    | [mm]     | 8                                                                             | 10  | 12      | 16                                | 20      | 24      | 27   | 30     |
| Installation factor                                                                                                     | γinst               | [-]      |                                                                               |     |         |                                   | 1,0     |         |      |        |

| B+BTec Injection System BIS-PE GEN3 for concrete                                       |           |
|----------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of shear loads under static and quasi-static action | Annex C 6 |

**Performances** 



| Anchor size                   | internal threaded                                                                                                                                                                                                                    | d anchor rods         |                     |               | IG-M6       | IG-M8        | IG-M10                                  | IG-M12                | IG-M16       | IG-M20     |  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|---------------|-------------|--------------|-----------------------------------------|-----------------------|--------------|------------|--|
| Steel failure1                | )                                                                                                                                                                                                                                    |                       |                     | <u> </u>      |             |              | •                                       | 1.                    |              | 1.         |  |
| Characteristic                | tension resistanc                                                                                                                                                                                                                    | ce. 5.8               | N <sub>Rk,s</sub>   | [kN]          | 10          | 17           | 29                                      | 42                    | 76           | 123        |  |
| Steel, strengtl               |                                                                                                                                                                                                                                      | 8.8                   | N <sub>Rk,s</sub>   | [kN]          | 16          | 27           | 46                                      | 67                    | 121          | 196        |  |
|                               | strength class 5.8                                                                                                                                                                                                                   |                       | γ <sub>Ms,N</sub>   | [-]           |             | 1,5          |                                         |                       |              |            |  |
|                               | tension resistance                                                                                                                                                                                                                   |                       |                     |               |             |              |                                         |                       |              |            |  |
|                               | HCR, Strength cla                                                                                                                                                                                                                    |                       | N <sub>Rk,s</sub>   | [kN]          | 14          | 26           | 41                                      | 59                    | 110          | 124        |  |
| Partial factor                |                                                                                                                                                                                                                                      |                       | γ <sub>Ms,N</sub>   | [-]           |             |              | 1,87                                    |                       |              | 2,86       |  |
| Combined pu                   | ull-out and conci                                                                                                                                                                                                                    | rete cone failu       | re                  |               |             |              |                                         |                       |              |            |  |
| Characteristion<br>holes (CD) | c bond resistance                                                                                                                                                                                                                    | e in uncracked        | concrete            | e C20/25 i    | n hamme     | r drilled ho | oles (HD) a                             | and comp              | ressed air   | drilled    |  |
| T                             | l: 40°C/24°C                                                                                                                                                                                                                         | Dry, wet              |                     |               | 20          | 19           | 19                                      | 18                    | 17           | 16         |  |
| Temperature range             | range II: 72°C/50°C flooded bore hole                                                                                                                                                                                                |                       | <sup>τ</sup> Rk,ucr | [N/mm²]       | 15          | 15           | 14                                      | 13                    | 13           | 12         |  |
| Characteristic                | bond resistance                                                                                                                                                                                                                      | in uncracked co       | oncrete C           | 20/25 in h    | ammer dr    | illed holes  | with hollo                              | w drill bit           | (HDB)        |            |  |
|                               | l: 40°C/24°C                                                                                                                                                                                                                         | Dry, wet              |                     |               | 16          | 16           | 16                                      | 15                    | 14           | 13         |  |
| Temperature                   | II: 72°C/50°C                                                                                                                                                                                                                        | concrete              | _                   | [N] /ma ma 21 | 14          | 14           | 13                                      | 13                    | 12           | 11         |  |
| range                         | l: 40°C/24°C                                                                                                                                                                                                                         | <sup>τ</sup> Rk,ucr   | [N/mm²]             | 16            | 16          | 15           | 15                                      | 14                    | 13           |            |  |
|                               | II: 72°C/50°C                                                                                                                                                                                                                        | hole                  |                     |               | 14          | 14           | 13                                      | 13                    | 12           | 11         |  |
|                               | bond resistance<br>w drill bit (HDB)                                                                                                                                                                                                 | in cracked cond       | crete C20           | /25 in ham    | nmer drille | d holes (h   | HD), comp                               | ressed air            | r drilled ho | les (CD)   |  |
| Temperature                   | I: 40°C/24°C                                                                                                                                                                                                                         | Dry, wet concrete and | <sup>τ</sup> Rk,cr  | [N/mm²]       | 7,0         | 8,5          | 8,5                                     | 8,5                   | 8,5          | 8,5        |  |
| range                         | II: 72°C/50°C                                                                                                                                                                                                                        | flooded bore hole     | r KK,CI             | []            | 6,0         | 7,0          | 7,0                                     | 7,0                   | 7,0          | 7,0        |  |
|                               | $\begin{array}{c} \text{ctor } \psi^0_{\text{sus}} \text{ in crac} \\ \text{nd with hollow dril} \\ \hline \text{I: } 40^{\circ}\text{C}/24^{\circ}\text{C} \\ \hline \text{II: } 72^{\circ}\text{C}/50^{\circ}\text{C} \end{array}$ |                       | v <sup>0</sup> sus  | [-]           | 0/25 in ha  | mmer dril    | 0,                                      | (HD), com<br>80<br>68 | pressed a    | ir drilled |  |
|                               |                                                                                                                                                                                                                                      |                       | C2                  | 5/30          |             |              | 1,                                      | 02                    |              |            |  |
|                               |                                                                                                                                                                                                                                      |                       | C3                  | 0/37          |             |              | 1,                                      | 04                    |              |            |  |
| _                             | ctors for concrete                                                                                                                                                                                                                   |                       |                     | 5/45          |             |              |                                         | 07                    |              |            |  |
| Ψc                            |                                                                                                                                                                                                                                      |                       |                     | 0/50          |             |              |                                         | 08                    |              |            |  |
|                               |                                                                                                                                                                                                                                      |                       |                     | 5/55<br>0/60  |             |              |                                         | 09<br>10              |              |            |  |
| Concrete cor                  | ne failure                                                                                                                                                                                                                           |                       | 1 00                | 0,00          |             |              | • • • • • • • • • • • • • • • • • • • • | 10                    |              |            |  |
| Relevant para                 | ameter                                                                                                                                                                                                                               |                       |                     |               |             |              | see Ta                                  | ble C2                |              |            |  |
| Splitting failu               | ıre                                                                                                                                                                                                                                  |                       |                     |               |             |              |                                         |                       |              |            |  |
| Relevant para                 | ameter                                                                                                                                                                                                                               |                       |                     |               |             |              | see Ta                                  | able C2               |              |            |  |
| Installation f                | actor                                                                                                                                                                                                                                |                       |                     |               |             |              |                                         |                       |              |            |  |
|                               | et concrete (HD; F                                                                                                                                                                                                                   | •                     | γ <sub>inst</sub>   | [-]           |             |              |                                         | ,0                    |              |            |  |
| or flooded bo                 | re hole (HD; HDB                                                                                                                                                                                                                     | •                     |                     |               |             |              |                                         | ,2                    |              |            |  |
|                               | (incl. nut and wash                                                                                                                                                                                                                  | ner) must comply      | y with the          | appropriate   | e material  |              | rty class of<br>od and the              |                       |              | d rod.     |  |

Z113878.21 8.06.01-305/21

Characteristic values of tension loads under static and quasi-static action

Annex C 7



1,2

| Table C8:                   |                                                   | eristic value<br>er a working |                         |                                           |             | der stat   | ic and o   | quasi-s     | tatic      |          |
|-----------------------------|---------------------------------------------------|-------------------------------|-------------------------|-------------------------------------------|-------------|------------|------------|-------------|------------|----------|
| Anchor size in              | ternal threaded                                   | anchor rods                   |                         |                                           | IG-M6       | IG-M8      | IG-M10     | IG-M12      | IG-M16     | IG-M20   |
| Steel failure <sup>1)</sup> |                                                   |                               |                         | I                                         |             |            |            |             |            |          |
| Characteristic te           | ension resistand                                  | e, 5.8                        | N <sub>Rk,s</sub>       | [kN]                                      | 10          | 17         | 29         | 42          | 76         | 123      |
| Steel, strength             | class                                             | 8.8                           | N <sub>Rk,s</sub>       | [kN]                                      | 16          | 27         | 46         | 67          | 121        | 196      |
| Partial factor, st          | trength class 5.8                                 | 3 and 8.8                     | γ <sub>Ms,N</sub>       | [-]                                       |             | I          | 1          | ,5          |            |          |
|                             | ension resistanc<br>CR, Strength cla              |                               | N <sub>Rk,s</sub>       | [kN]                                      | 14          |            |            |             | 110        | 124      |
| Partial factor              |                                                   |                               | γ <sub>Ms,N</sub>       | [-]                                       |             | •          | 1,87       |             |            | 2,86     |
| Combined pull               | l-out and concr                                   | ete cone failu                | re                      |                                           |             |            |            |             |            |          |
| Characteristic l            | bond resistance                                   | e in uncracked                | concrete (              | C20/25 in                                 | hammer      | drilled ho | les (HD) a | nd compr    | essed air  | drilled  |
|                             | l: 40°C/24°C                                      | Dry, wet                      |                         |                                           | 20          | 19         | 19         | 18          | 17         | 16       |
| Temperature –<br>range      | range II: 72°C/50°C flooded bore hole             |                               | <sup>τ</sup> Rk,ucr,100 |                                           | 15          | 15         | 14         | 13          | 13         | 12       |
| Characteristic b            | ond resistance                                    | in uncracked c                | oncrete C20             | )/25 in hai                               | mmer dril   | led holes  | with hollo | w drill bit | (HDB)      |          |
| _                           | I: 40°C/24°C Dry, wet                             |                               |                         |                                           | 16          | 16         | 16         | 15          | 14         | 13       |
| Temperature _               |                                                   | concrete                      | τ <sub>Rk,ucr,100</sub> | [N/mm²]                                   | 14          | 14         | 13         | 13          | 12         | 11       |
| _                           | l: 40°C/24°C                                      | flooded bore                  | rkk,uci, ioo            | [[, (), , , , , , , , , , , , , , , , , , | 16          | 16         | 15         | 15          | 14         | 13       |
|                             | II: 72°C/50°C                                     | hole                          |                         |                                           | 14          | 14         | 13         | 13          | 12         | 11       |
| and with hollow             | ond resistance<br>drill bit (HDB)                 |                               | crete C20/2             | 5 in hamn                                 | ner drilled | I holes (H | D), compr  | essed air   | drilled ho | les (CD) |
| Temperature _               | l: 40°C/24°C                                      | Dry, wet concrete and         | τ <sub>Rk,ucr,100</sub> | [N/mm²]                                   | 6,5         | 7,5        | 7,5        | 7,5         | 7,5        | 7,5      |
| range                       | II: 72°C/50°C                                     | flooded bore<br>hole          |                         |                                           | 5,5         | 6,5        | 6,5        | 6,5         | 6,5        | 6,5      |
|                             |                                                   |                               | C25                     |                                           |             |            |            | 02          |            |          |
| Increasing facto            | are for concrete                                  |                               | C30                     |                                           |             |            |            | 04          |            |          |
| _                           | Increasing factors for concrete C35/45  We C40/50 |                               |                         |                                           |             |            |            | 07<br>08    |            |          |
| $\Psi_{\mathbf{c}}$         | C40                                               |                               |                         |                                           |             | 09         |            |             |            |          |
|                             |                                                   |                               | C50                     |                                           |             |            |            | 10          |            |          |
| Concrete cone               | failure                                           |                               |                         |                                           |             |            |            |             |            |          |
| Relevant param              | neter                                             |                               |                         |                                           |             |            | see Ta     | able C2     |            |          |
| Splitting failure           | е                                                 |                               |                         |                                           |             |            |            |             |            |          |
| Relevant param              |                                                   |                               |                         |                                           |             |            | see Ta     | able C2     |            |          |
| Installation fac            |                                                   |                               |                         |                                           |             |            |            |             |            |          |
| for dry and wet             | concrete (HD; H                                   | DB, CD)                       | γ <sub>inst</sub>       | [-]                                       |             |            | 1          | ,0          |            |          |

<sup>1)</sup> Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element

 $\gamma_{\text{inst}}$ 

[-]

for flooded bore hole (HD; HDB, CD)

| B+BTec Injection System BIS-PE GEN3 for concrete                                         |           |
|------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of tension loads under static and quasi-static action | Annex C 8 |

<sup>2)</sup> For IG-M20 strength class 50 is valid



|                                                                                                                    | eristic value<br>or a working      |                           |              |              | der stat   | ic and o | quasi-s      | tatic       |                |  |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------|--------------|--------------|------------|----------|--------------|-------------|----------------|--|
| Anchor size internal threaded                                                                                      |                                    | =                         |              | IG-M6        | IG-M8      | IG-M10   | IG-M12       | IG-M16      | IG-M20         |  |
| Steel failure <sup>1)</sup>                                                                                        |                                    |                           |              |              |            |          |              |             |                |  |
| Characteristic tension resistant                                                                                   | ce. 5.8                            | N <sub>Rk,s</sub>         | [kN]         | 10           | 17         | 29       | 42           | 76          | 123            |  |
| Steel, strength class                                                                                              | 8.8                                | N <sub>Rk,s</sub>         | [kN]         | 16           | 27         | 46       | 67           | 121         | 196            |  |
| Partial factor, strength class 5.8                                                                                 | 3 and 8.8                          | γ <sub>Ms,N</sub> [-] 1,5 |              |              |            |          | .5           |             |                |  |
| Characteristic tension resistant                                                                                   |                                    |                           |              | 4.4          | 00         |          |              | 440         | 404            |  |
| Steel A4 and HCR, Strength cl                                                                                      |                                    | N <sub>Rk,s</sub>         | [kN]         | 14           | 26         | 41       | 59           | 110         | 124            |  |
| Partial factor                                                                                                     |                                    | γ <sub>Ms,N</sub>         | [-]          |              |            | 1,87     |              |             | 2,86           |  |
| Combined pull-out and conc                                                                                         | rete cone failu                    | re for a wo               | rking life   | of 50 yea    | ars        |          |              |             |                |  |
| Characteristic bond resistanc                                                                                      |                                    | concrete (                | 220/25 in    | diamond      | drilled ho | les (DD) |              | T           |                |  |
| Temperature  : 40°C/24°C                                                                                           | Dry, wet concrete and flooded bore | τ <sub>Rk,ucr</sub>       | [N/mm²]      | 14           | 14         | 13       | 12           | 12          | 11             |  |
| range II: 72°C/50°C                                                                                                | hole                               | ·                         |              | 12           | 11         | 10       | 9,5          | 9,5         | 9,0            |  |
| Reduction factor $\psi^0_{sus}$ in uncr                                                                            |                                    | e C20/25 ir               | diamond      | drilled ho   | oles (DD)  |          |              |             |                |  |
| Temperature I: 40°C/24°C                                                                                           | Dry, wet concrete and              | $\Psi^0$ sus              | [-]          |              |            | 0,       | 77           |             |                |  |
| range II: 72°C/50°C                                                                                                | flooded bore<br>hole               |                           |              |              |            |          | 72           |             |                |  |
|                                                                                                                    |                                    | C25                       |              |              |            |          | 04           |             |                |  |
|                                                                                                                    |                                    | C30,                      |              |              |            |          | 08           |             |                |  |
| Increasing factors for concrete                                                                                    |                                    | C35                       |              |              |            |          | 12           |             |                |  |
| Ψc                                                                                                                 |                                    | C40,                      |              | 1,15<br>1,17 |            |          |              |             |                |  |
|                                                                                                                    |                                    | /60                       |              |              |            | 17<br>19 |              |             |                |  |
| Combined pull-out and concr                                                                                        | ete cone failu                     |                           |              | of 100 ve    | ears       | ١,       | 13           |             |                |  |
| Characteristic bond resistance                                                                                     |                                    |                           |              |              |            | les (DD) |              |             |                |  |
|                                                                                                                    | Dry, wet                           |                           |              | 14           | 14         | 13       | 12           | 12          | 11             |  |
| Temperature II: 72°C/50°C                                                                                          | concrete and flooded bore          | <sup>τ</sup> Rk,ucr,100   | [N/mm²]      | 11           | 10         | 10       | 9,5          | 9,0         | 8,5            |  |
|                                                                                                                    | hole                               | 005                       | /2.0         |              | '          |          |              | 0,0         |                |  |
|                                                                                                                    |                                    | C25                       |              |              |            |          | 04<br>08     |             |                |  |
| Increasing factors for concrete                                                                                    |                                    | C35                       |              |              |            |          | 12           |             |                |  |
| $\Psi_{c}$                                                                                                         |                                    | C40                       |              |              |            |          | 15           |             |                |  |
| _                                                                                                                  |                                    | C45                       | /55          |              |            |          | 17           |             |                |  |
|                                                                                                                    |                                    | C50                       | /60          |              |            | 1,       | 19           |             |                |  |
| Concrete cone failure                                                                                              |                                    |                           |              |              |            |          |              |             |                |  |
| Relevant parameter                                                                                                 |                                    |                           |              |              |            | see Ta   | able C2      |             |                |  |
| Splitting failure Relevant parameter                                                                               |                                    |                           |              |              |            | sec To   | able C2      |             |                |  |
| Installation factor                                                                                                |                                    |                           |              |              |            | 300 I    | ADIC UZ      |             |                |  |
| for dry and wet concrete (DD)                                                                                      |                                    |                           |              |              |            | 1        | ,0           |             |                |  |
| for flooded bore hole (DD)                                                                                         |                                    | γinst                     | [-]          | 1,           | 2          | ·        |              | ,4          |                |  |
| <ul> <li>Fastenings (incl. nut and v<br/>rod. The characteristic ten</li> <li>For IG-M20 strength class</li> </ul> | sion resistance                    |                           |              | ate materi   | al and pro |          | s of the int | ernal threa |                |  |
| B+BTec Injection System I                                                                                          | BIS-PE GEN3                        | for concre                | te           |              |            |          |              | Annex C     | ٠ ۵            |  |
| Performances Characteristic values of tension                                                                      | loads under sta                    | tic and quas              | i-static act | tion         |            |          |              | annex C     | , <del>y</del> |  |



| Table C10: Character                                                                               | istic va                       | alues of                       | shear   | loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | under | static a | nd qua | si-stati | ic action                   |
|----------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|--------|----------|-----------------------------|
| Anchor size for internal thread                                                                    | ed anch                        | or rods                        |         | IG-M6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IG-M8 | IG-M10   | IG-M12 | IG-M16   | IG-M20                      |
| Steel failure without lever arm <sup>1)</sup>                                                      | )                              |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |          |        |          |                             |
| Characteristic shear resistance,                                                                   | 5.8                            | V <sup>0</sup> Rk,s            | [kN]    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9     | 15       | 21     | 38       | 61                          |
| Steel, strength class                                                                              | 8.8                            | V <sup>0</sup> Rk,s            | [kN]    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14    | 23       | 34     | 60       | 98                          |
| Partial factor, strength class 5.8 a                                                               | and 8.8                        | γ <sub>Ms,V</sub>              | [-]     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |          | 1,25   |          |                             |
| Characteristic shear resistance,<br>Stainless Steel A4 and HCR,<br>Strength class 70 <sup>2)</sup> | V <sup>0</sup> <sub>Rk,s</sub> | [kN]                           | 7       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20    | 30       | 55     | 40       |                             |
| Partial factor $\gamma_{Ms,V}$ [-] 1,56                                                            |                                |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |          | 2,38   |          |                             |
| Ductility factor                                                                                   |                                | k <sub>7</sub>                 | [-] 1,0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |          |        |          |                             |
| Steel failure with lever arm <sup>1)</sup>                                                         |                                |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |          |        |          |                             |
| Characteristic bending moment,                                                                     | 5.8                            | M <sup>0</sup> Rk,s            | [Nm]    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19    | 37       | 66     | 167      | 325                         |
| Steel, strength class                                                                              | 8.8                            | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30    | 60       | 105    | 267      | 519                         |
| Partial factor, strength class 5.8 a                                                               | and 8.8                        | γ <sub>Ms,</sub> ∨             | [-]     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |          | 1,25   |          |                             |
| Characteristic bending moment,<br>Stainless Steel A4 and HCR,<br>Strength class 70 <sup>2)</sup>   |                                | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26    | 52       | 92     | 233      | 456                         |
| Partial factor                                                                                     |                                | $\gamma_{Ms,V}$                | [-]     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 1,56     |        |          | 2,38                        |
| Concrete pry-out failure                                                                           |                                |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |          |        |          |                             |
| Factor                                                                                             |                                | k <sub>8</sub>                 | [-]     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |          | 2,0    |          |                             |
| Installation factor                                                                                |                                | γinst                          | [-]     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |          | 1,0    |          |                             |
| Concrete edge failure                                                                              |                                | •                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |          |        |          |                             |
| Effective length of fastener                                                                       |                                |                                |         | $[min(h_{ef}; 12 \cdot d_{nom})]$ $[min(h_{ef}; min(h_{ef}; min(h_{ef$ |       |          |        |          | min(h <sub>ef</sub> ; 300mm |
| Outside diameter of fastener                                                                       |                                | d <sub>nom</sub>               | [mm]    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12    | 16       | 20     | 24       | 30                          |
| Installation factor                                                                                |                                | γinst                          | [-]     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |          | 1,0    |          | •                           |

<sup>1)</sup> Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element. <sup>2)</sup> For IG-M20 strength class 50 is valid

| B+BTec Injection System BIS-PE GEN3 for concrete                                       |            |
|----------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of shear loads under static and quasi-static action | Annex C 10 |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | naracteristic                                                                  |                     |                       |              | ds u        | nder           | stati        | c and            | d qua                  | asi-st          | atic  |          |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------|-----------------------|--------------|-------------|----------------|--------------|------------------|------------------------|-----------------|-------|----------|-------|
| Anchor size reinforci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |                     | <u> </u>              |              | Ø 10        | Ø 12           | Ø 14         | Ø 16             | Ø 20                   | Ø 24            | Ø 25  | Ø 28     | Ø 32  |
| Steel failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                |                     |                       |              |             |                |              |                  | <u> </u>               |                 |       |          |       |
| Characteristic tension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | resistance                                                                     | N <sub>Rk,s</sub>   | [kN]                  |              |             |                |              | A <sub>s</sub> · | f <sub>uk</sub> 1)     |                 |       |          |       |
| Cross section area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                | A <sub>s</sub>      | [mm²]                 | 50           | 79          | 113            | 154          | 201              | 314                    | 452             | 491   | 616      | 804   |
| Partial factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                | $\gamma_{Ms,N}$     | [-]                   |              |             |                |              | 1,               | <b>4</b> <sup>2)</sup> |                 |       |          |       |
| Combined pull-out ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |                     | •                     |              |             |                |              |                  |                        |                 |       |          |       |
| Characteristic bond re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | esistance in unc                                                               | racked cond         | crete C20/            | '25 in I     | namme       | er drille      | ed hole      | es (HD           | ) and                  | compr           | essed | air dril | led   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dry, wet                                                                       |                     |                       | 16           | 16          | 16             | 16           | 16               | 16                     | 15              | 15    | 15       | 15    |
| Gemperature   Head of the control | flooded bore<br>hole                                                           | <sup>τ</sup> Rk,ucr | [N/mm²]               | 12           | 12          | 12             | 12           | 12               | 12                     | 12              | 12    | 11       | 11    |
| ☐ ⊢<br>Characteristic bond res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l<br>sistance in uncra                                                         | l<br>cked concre    | <u>l</u><br>te C20/25 | l<br>in han  | l<br>nmer d | l<br>Irilled h | l<br>noles v | L<br>vith ho     | llow d                 | l<br>rill bit ( | HDB)  |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dry, wet                                                                       |                     |                       | 14           | 14          | 13             | 13           | 13               | 13                     | 13              | 13    | 13       | 13    |
| ii: 72°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | concrete                                                                       |                     |                       | 12           | 12          | 12             | 11           | 11               | 11                     | 11              | 11    | 11       | 11    |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flooded bore                                                                   | <sup>τ</sup> Rk,ucr | [N/mm²]               | 13           | 13          | 13             | 13           | 13               | 13                     | 13              | 13    | 13       | 13    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hole                                                                           |                     |                       | 11           | 11          | 11             | 11           | 11               | 11                     | 11              | 11    | 11       | 11    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L<br>sistance in cracke                                                        | L<br>C20/25 in      |                       |              |             |                |              |                  |                        |                 |       |          |       |
| Characteristic bond resistance in cracked concrete C20/25 in hammer drilled holes (HD), compressed air drilled holes (CD) and with hollow drill bit (HDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                |                     |                       |              |             |                |              |                  |                        |                 |       |          |       |
| Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dry, wet concrete and                                                          | τ                   | [N/mm²]               | 7,0          | 7,0         | 8,5            | 8,5          | 8,5              | 8,5                    | 8,5             | 8,5   | 8,5      | 8,5   |
| ang II: 72°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | flooded bore<br>hole                                                           | TRk,cr [N/i         | [[[]]]                | 6,0          | 6,0         | 7,0            | 7,0          | 7,0              | 7,0                    | 7,0             | 7,0   | 7,0      | 7,0   |
| Reduction factor ψ <sup>0</sup> su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                                                                              |                     | concrete              | C20/2        | 5 in h      | amme           | r drille     | d holes          | s (HD)                 | , comp          | resse | d air d  | illed |
| holes (CD) and with h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ollow drill bit (HD<br>T                                                       | B)<br>I             | ı                     |              |             |                |              |                  |                        |                 |       |          |       |
| nperature<br>ange :: 40°C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dry, wet concrete and                                                          | Ψ <sup>0</sup> sus  | [-]                   |              |             |                |              | 0,               | 80                     |                 |       |          |       |
| II: 72°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | flooded bore<br>hole                                                           | Ψ sus               | [-]                   | 0,68         |             |                |              |                  |                        |                 |       |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                              | C25                 | /30                   | 1,02         |             |                |              |                  |                        |                 |       |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                | C30.                | /37                   | 1,02<br>1,04 |             |                |              |                  |                        |                 |       |          |       |
| Increasing factors for c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | concrete                                                                       | C35                 |                       |              |             |                |              |                  | 07                     |                 |       |          |       |
| Ψс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                | C40                 |                       |              |             |                |              |                  | 80                     |                 |       |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                | C45.                |                       |              |             |                |              |                  | 09<br>10               |                 |       |          |       |
| Concrete cone failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>)                                                                          | L C30.              | ,                     | <u> </u>     |             |                |              | 1,               | 10                     |                 |       |          |       |
| Relevant parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                     |                       |              |             |                |              | see Ta           | able C                 | 2               |       |          |       |
| Splitting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                |                     |                       |              |             |                |              |                  |                        |                 |       |          |       |
| Relevant parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                     |                       |              |             |                |              | see Ta           | able C                 | 2               |       |          |       |
| Installation factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                |                     |                       |              |             |                |              |                  |                        |                 |       |          |       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | for dry and wet concrete (HD; HDB, CD)                                         |                     |                       |              |             |                |              |                  | ,0                     |                 |       |          |       |
| for flooded bore hole (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                |                     |                       |              |             |                |              | 1                | ,2                     |                 |       |          |       |
| <ol> <li>f<sub>uk</sub> shall be taken from</li> <li>in absence of national</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n the specificatior<br>al regulation                                           | s of reinforci      | ng bars               |              |             |                |              |                  |                        |                 |       |          |       |
| B+BTec Injection S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ystem BIS-PE                                                                   | GEN3 for c          | oncrete               |              |             |                |              |                  |                        |                 |       |          |       |
| Performances<br>Characteristic values o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Performances Characteristic values of tension loads under static and quasi-sta |                     |                       |              | on          |                |              |                  |                        | A               | nnex  | C 11     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                |                     |                       |              |             |                |              |                  |                        |                 |       |          |       |



| Anchor size reinforci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ng bar                |                            |                   | Ø8           | Ø 10     | Ø 12      | Ø 14    | Ø 16             | Ø 20                   | Ø 24       | Ø 25    | Ø 28     | Ø 3 |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|-------------------|--------------|----------|-----------|---------|------------------|------------------------|------------|---------|----------|-----|--|
| Steel failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                            |                   |              |          |           |         |                  |                        |            | ı       |          |     |  |
| Characteristic tension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | resistance            | N <sub>Rk,s</sub>          | [kN]              |              |          |           |         | A <sub>s</sub> • | f <sub>uk</sub> 1)     |            |         |          |     |  |
| Cross section area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | A <sub>s</sub>             | [mm²]             | 50           | 79       | 113       | 154     | 201              | 314                    | 452        | 491     | 616      | 804 |  |
| Partial factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | γ <sub>Ms,N</sub>          | [-]               |              |          |           |         | 1,               | <b>4</b> <sup>2)</sup> |            | ı       |          | ı   |  |
| Combined pull-out ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nd concrete failu     |                            |                   | ı            |          |           |         |                  |                        |            |         |          |     |  |
| Characteristic bond re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | esistance in unc      | racked cond                | rete C20/         | ′25 in I     | namme    | er drille | ed hole | s (HD            | ) and                  | compr      | essed   | air dril | led |  |
| II: 40°C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dry, wet concrete and | TDI: 400                   | [N/mm²]           | 16           | 16       | 16        | 16      | 16               | 16                     | 15         | 15      | 15       | 15  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | flooded bore<br>hole  | <sup>τ</sup> Rk,ucr,100    |                   | 12           | 12       | 12        | 12      | 12               | 12                     | 12         | 12      | 11       | 11  |  |
| Characteristic bond res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | cked concre                | te C20/25         | in han       | nmer d   |           | noles v | vith ho          |                        | rill bit ( | HDB)    |          |     |  |
| စ္ <u>l: 40°C/24°C</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Diy, wot              |                            |                   | 14           | 14       | 13        | 13      | 13               | 13                     | 13         | 13      | 13       | 13  |  |
| 1: 40°C/24°C     1: 72°C/50°C     1: 7 | concrete              | TDI                        | <br>  [N/mm²]     | 12           | 12       | 12        | 11      | 11               | 11                     | 11         | 11      | 11       | 11  |  |
| ਵੂੰ ਫ਼ੌ ।: 40°C/24°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | flooded bore          | <sup>τ</sup> Rk,ucr,100    | [IN/IIIII-]<br>   | 13           | 13       | 13        | 13      | 13               | 13                     | 13         | 13      | 13       | 13  |  |
| <sup>©</sup> II: 72°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hole                  |                            |                   | 11           | 11       | 11        | 11      | 11               | 11                     | 11         | 11      | 11       | 11  |  |
| Characteristic bond res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | ed concrete                | C20/25 in         | hamm         | er drill | ed hol    | es (HD  | ), con           | npress                 | ed air     | drilled | holes    | (CD |  |
| and with hollow drill bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (HDB)                 |                            |                   |              |          |           |         |                  |                        | 1          | 1       |          |     |  |
| con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | concrete and          | TRk or 100                 | [N/mm²]           | 6,5          | 6,5      | 7,5       | 7,5     | 7,5              | 7,5                    | 7,5        | 7,5     | 7,5      | 7,  |  |
| E II: 72°C/50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | flooded bore<br>hole  | <sup>T</sup> Rk,cr,100 [N/ | [ [ , , , , , , ] | 5,5          | 5,5      | 6,5       | 6,5     | 6,5              | 6,5                    | 6,5        | 6,5     | 6,5      | 6,  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                            |                   |              |          |           |         |                  | 02                     |            |         |          |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 -                   | C30.                       |                   | 1,04<br>1,07 |          |           |         |                  |                        |            |         |          |     |  |
| Increasing factors for c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | concrete              | C35,                       |                   |              |          |           |         |                  |                        |            |         |          |     |  |
| Ψс                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | C40,                       |                   |              |          |           |         |                  | 08<br>09               |            |         |          |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | C50                        |                   |              |          |           |         |                  | 10                     |            |         |          |     |  |
| Concrete cone failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )                     |                            |                   | <u> </u>     |          |           |         |                  |                        |            |         |          |     |  |
| Relevant parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                            |                   |              |          |           | ;       | see Ta           | ble C                  | 2          |         |          |     |  |
| Splitting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                            |                   |              |          |           |         |                  |                        |            |         |          |     |  |
| Relevant parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                            |                   | •            |          |           | ;       | see Ta           | ble C                  | 2          |         |          |     |  |
| Installation factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                            |                   |              |          |           |         |                  |                        |            |         |          |     |  |
| for dry and wet concret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · ·           | γinst                      | [-]               |              |          |           |         | 1                | ,0                     |            |         |          |     |  |
| for flooded bore hole (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HD; HDB, CD)          | 'IIISt                     | r 1               |              |          |           |         | 1                | ,2                     |            |         |          |     |  |
| 1) f <sub>uk</sub> shall be taken from 2) in absence of nationa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | s of reinforci             | ng bars           |              |          |           |         |                  |                        |            |         |          |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                            |                   |              |          |           |         |                  |                        |            |         |          |     |  |



| Anchor size reinforcir                            | ng bar                                   |                         |                       | Ø8       | Ø 10    | Ø 12       | Ø 14   | Ø 16             | Ø 20                   | Ø 24 | Ø 25 | Ø 28 | Ø 3 |
|---------------------------------------------------|------------------------------------------|-------------------------|-----------------------|----------|---------|------------|--------|------------------|------------------------|------|------|------|-----|
| Steel failure                                     |                                          |                         |                       |          |         |            |        |                  |                        | I    |      |      |     |
| Characteristic tension r                          | esistance                                | $N_{Rk,s}$              | [kN]                  |          |         |            |        | A <sub>s</sub> · | f <sub>uk</sub> 1)     |      |      |      |     |
| Cross section area                                |                                          | $A_s$                   | [mm²]                 | 50       | 79      | 113        | 154    | 201              | 314                    | 452  | 491  | 616  | 804 |
| Partial factor                                    |                                          | $\gamma_{Ms,N}$         | [-]                   |          |         |            |        | 1,               | <b>4</b> <sup>2)</sup> |      |      |      |     |
| Combined pull-out an                              |                                          |                         |                       |          |         |            |        |                  |                        |      |      |      |     |
| Characteristic bond re                            | sistance in unci                         | acked cond              | rete C20/             | 25 in    | diamo   | nd drill   | ed hol | es (DD           | ))                     |      | ı    | ı    |     |
| I: 40°C/24°C — Lange II: 72°C/50°C                | Dry, wet concrete and flooded bore       | <sup>₹</sup> Rk,ucr     | [N/mm²]               | 14       | 13      | 13         | 13     | 12               | 12                     | 11   | 11   | 11   | 11  |
| 등 II: 72°C/50°C                                   | hole                                     |                         |                       | 11       | 11      | 10         | 10     | 10               | 9,5                    | 9,5  | 9,5  | 9,0  | 9,0 |
| Reduction factor ${\psi^0}_{	extsf{sus}}$         | in uncracked c                           | oncrete C2              | 0/25 in dia           | mond     | drilled | holes      | (DD)   |                  |                        | I    |      |      |     |
| I: 40°C/24°C  II: 72°C/50°C                       | Dry, wet<br>concrete and<br>flooded bore | $\Psi^0$ sus            | [-]                   |          |         |            | · · ·  | 0,               | 77                     |      |      |      |     |
| II: 72°C/50°C                                     | hole                                     |                         |                       |          |         |            |        | 0,               | 72                     |      |      |      |     |
|                                                   |                                          | C25/                    |                       |          |         |            |        |                  | 04                     |      |      |      |     |
| navagaina faatava far a                           |                                          | C30/                    |                       |          |         |            |        |                  | 08                     |      |      |      |     |
| ncreasing factors for c                           | oncrete                                  |                         | 1,12<br>40/50<br>1,15 |          |         |            |        |                  |                        |      |      |      |     |
| rc                                                | C45/                                     |                         |                       |          |         |            |        | 17               |                        |      |      |      |     |
|                                                   |                                          | C50,                    |                       |          |         |            |        |                  | 19                     |      |      |      |     |
| Combined pull-out an                              | d concrete failu                         | re for a wo             | rking life            | of 100   | ) year: | S          |        |                  |                        |      |      |      |     |
| Characteristic bond re                            | sistance in unc                          | acked cond              | rete C20/             | 25 in    | diamo   | nd drill   | ed hol | es (DD           | ))                     | 1    | 1    |      |     |
| I: 40°C/24°C  II: 72°C/50°C                       | Dry, wet concrete and flooded bore       | <sup>τ</sup> Rk,ucr,100 | [N/mm²]               | 14       | 13      | 13         | 13     | 12               | 12                     | 11   | 11   | 11   | 11  |
| हिं । II: 72°C/50°C                               | hole                                     |                         |                       | 11       | 10      | 10         | 10     | 9,5              | 9,0                    | 9,0  | 9,0  | 8,5  | 8,5 |
|                                                   |                                          | C25                     |                       |          |         | •          |        |                  | 04                     |      |      | •    |     |
|                                                   |                                          | C30,                    |                       |          |         |            |        |                  | 80                     |      |      |      |     |
| ncreasing factors for c                           | oncrete                                  | C35/                    |                       |          |         |            |        |                  | 12<br>15               |      |      |      |     |
| r c                                               |                                          | C45/                    |                       |          |         |            |        |                  | 17                     |      |      |      |     |
|                                                   |                                          | C50                     |                       |          |         |            |        |                  | 19                     |      |      |      |     |
| Concrete cone failure                             |                                          |                         |                       |          |         |            |        |                  |                        |      |      |      |     |
| Relevant parameter                                |                                          |                         |                       |          |         |            | ;      | see Ta           | ble C2                 | 2    |      |      |     |
| Splitting                                         |                                          |                         |                       | I        |         |            |        |                  |                        | _    |      |      |     |
| Relevant parameter                                |                                          |                         |                       |          |         |            | ;      | see Ta           | ble C2                 | 2    |      |      |     |
| nstallation factor                                | o (DD)                                   |                         | Ι                     | <u> </u> |         |            |        |                  | 0                      |      |      |      |     |
| or dry and wet concret<br>or flooded bore hole (E | · ,                                      | γinst                   | [-]                   |          | 1       | ,2         |        | 1                | ,0                     | 1    | ,4   |      |     |
| 1) f <sub>uk</sub> shall be taken from            |                                          | e of roinforci          | na hare               | <u> </u> | ı       | , <b>_</b> |        |                  |                        | - 1  | ,-   |      |     |
| <sup>2)</sup> in absence of nationa               |                                          | s of reillioici         | ng bars               |          |         |            |        |                  |                        |      |      |      |     |
| B+BTec Injection Sy                               | /stem BIS-PE (                           | GEN3 for co             | oncrete               |          |         |            |        |                  |                        |      |      |      |     |



| Table C14: Characteris          | tic values                     | of she | ar lo                                                                     | ads ı | unde | r sta | itic a | nd q               | uasi-                | static | actio | า    |
|---------------------------------|--------------------------------|--------|---------------------------------------------------------------------------|-------|------|-------|--------|--------------------|----------------------|--------|-------|------|
| Anchor size reinforcing bar     |                                |        | Ø8                                                                        | Ø 10  | Ø 12 | Ø 14  | Ø 16   | Ø 20               | Ø 24                 | Ø 25   | Ø 28  | Ø 32 |
| Steel failure without lever arm |                                |        | •                                                                         | •     |      |       |        |                    |                      | •      |       | •    |
| Characteristic shear resistance | V <sup>0</sup> Rk,s            | [kN]   |                                                                           |       |      |       | 0,5    | · A <sub>s</sub> · | f <sub>uk</sub> 1)   |        |       |      |
| Cross section area              | A <sub>s</sub>                 | [mm²]  | 50                                                                        | 79    | 113  | 154   | 201    | 314                | 452                  | 491    | 616   | 804  |
| Partial factor                  | γ <sub>Ms,V</sub>              | [-]    |                                                                           | •     | •    | •     | •      | 1,5 <sup>2)</sup>  |                      | •      | •     | •    |
| Ductility factor                | k <sub>7</sub>                 | [-]    |                                                                           |       |      |       |        | 1,0                |                      |        |       |      |
| Steel failure with lever arm    | ·                              | •      |                                                                           |       |      |       |        |                    |                      |        |       |      |
| Characteristic bending moment   | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]   |                                                                           |       |      |       | 1.2    | • W <sub>el</sub>  | • f <sub>uk</sub> 1) |        |       |      |
| Elastic section modulus         | W <sub>el</sub>                | [mm³]  | 50                                                                        | 98    | 170  | 269   | 402    | 785                | 1357                 | 1534   | 2155  | 3217 |
| Partial factor                  | γ <sub>Ms,V</sub>              | [-]    |                                                                           | •     | •    |       | •      | 1,5 <sup>2)</sup>  |                      |        |       | •    |
| Concrete pry-out failure        |                                | •      | •                                                                         |       |      |       |        |                    |                      |        |       |      |
| Factor                          | k <sub>8</sub>                 | [-]    |                                                                           |       |      |       |        | 2,0                |                      |        |       |      |
| Installation factor             | γinst                          | [-]    |                                                                           |       |      |       |        | 1,0                |                      |        |       |      |
| Concrete edge failure           | ·                              | •      |                                                                           |       |      |       |        |                    |                      |        |       |      |
| Effective length of fastener    | I <sub>f</sub>                 | [mm]   | min(h <sub>ef</sub> ; 12 · d <sub>nom</sub> ) min(h <sub>ef</sub> ; 300mm |       |      |       |        |                    | mm)                  |        |       |      |
| Outside diameter of fastener    | d <sub>nom</sub>               | [mm]   | 8                                                                         | 10    | 12   | 14    | 16     | 20                 | 24                   | 25     | 28    | 32   |
| Installation factor             | γinst                          | [-]    |                                                                           |       |      |       |        | 1,0                |                      |        |       |      |

 $<sup>^{1)}\,</sup>f_{uk}$  shall be taken from the specifications of reinforcing bars  $^{2)}$  in absence of national regulation

| B+BTec Injection System BIS-PE GEN3 for concrete                                       |            |
|----------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of shear loads under static and quasi-static action | Annex C 14 |



| Table C15: | Displacements under tension load <sup>1)</sup> in hammer drilled holes (HD), |
|------------|------------------------------------------------------------------------------|
|            | compressed air drilled holes (CD) and with hollow drill bit (HDB)            |

| Anchor size threaded re | od                                 |                    | M8         | M10      | M12       | M16     | M20      | M24   | M27   | M30   |
|-------------------------|------------------------------------|--------------------|------------|----------|-----------|---------|----------|-------|-------|-------|
| Uncracked concrete un   | der static an                      | d quasi-static ac  | tion for a | workin   | g life of | 50 and  | 100 year | 'S    |       |       |
| Temperature range I:    | $\delta_{N0}$ -factor              | [mm/(N/mm²)]       | 0,028      | 0,029    | 0,030     | 0,033   | 0,035    | 0,038 | 0,039 | 0,041 |
| 40°C/24°C               | $\delta_{N\infty}$ -factor         | [mm/(N/mm²)]       | 0,028      | 0,029    | 0,030     | 0,033   | 0,035    | 0,038 | 0,039 | 0,041 |
| Temperature range II:   | δ <sub>N0</sub> -factor            | [mm/(N/mm²)]       | 0,038      | 0,039    | 0,040     | 0,044   | 0,047    | 0,051 | 0,052 | 0,055 |
| 72°C/50°C               | $\delta_{	extsf{N}\infty}$ -factor | [mm/(N/mm²)]       | 0,047      | 0,049    | 0,051     | 0,055   | 0,059    | 0,064 | 0,067 | 0,070 |
| Cracked concrete unde   | r static and o                     | quasi-static actio | n for a w  | orking l | ife of 50 | and 100 | ) years  |       |       |       |
| Temperature range l:    | δ <sub>N0</sub> -factor            | [mm/(N/mm²)]       | 0,069      | 0,071    | 0,072     | 0,074   | 0,076    | 0,079 | 0,081 | 0,082 |
| 40°C/24°C               | $\delta_{N\infty}$ -factor         | [mm/(N/mm²)]       | 0,100      | 0,115    | 0,122     | 0,128   | 0,135    | 0,142 | 0,155 | 0,171 |
| Temperature range II:   | $\delta_{N0}$ -factor              | [mm/(N/mm²)]       | 0,092      | 0,095    | 0,096     | 0,099   | 0,102    | 0,106 | 0,109 | 0,110 |
| 72°C/50°C               | $\delta_{	extsf{N}\infty}$ -factor | [mm/(N/mm²)]       | 0,134      | 0,154    | 0,163     | 0,172   | 0,181    | 0,189 | 0,207 | 0,229 |

<sup>1)</sup> Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau$ ;  $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot \tau;$   $\tau$ : action bond stress for tension

#### Displacements under tension load<sup>1)</sup> in diamond drilled holes (DD) Table C16:

| Anchor size threaded ro | od                                 |                    | M8        | M10    | M12       | M16      | M20   | M24   | M27   | M30   |
|-------------------------|------------------------------------|--------------------|-----------|--------|-----------|----------|-------|-------|-------|-------|
| Uncracked concrete un   | der static and                     | d quasi-static act | ion for a | workin | g life of | 50 years | S     |       |       |       |
| Temperature range I:    | $\delta_{N0}$ -factor              | [mm/(N/mm²)]       | 0,011     | 0,012  | 0,012     | 0,013    | 0,014 | 0,014 | 0,015 | 0,015 |
| 40°C/24°C               | $\delta_{	extsf{N}\infty}$ -factor | [mm/(N/mm²)]       | 0,018     | 0,019  | 0,019     | 0,020    | 0,022 | 0,023 | 0,024 | 0,025 |
| Temperature range II:   | $\delta_{N0}$ -factor              | [mm/(N/mm²)]       | 0,013     | 0,014  | 0,014     | 0,015    | 0,016 | 0,016 | 0,018 | 0,018 |
| 72°C/50°C               | $\delta_{	extsf{N}\infty}$ -factor | [mm/(N/mm²)]       | 0,052     | 0,053  | 0,055     | 0,058    | 0,062 | 0,065 | 0,068 | 0,070 |
| Uncracked concrete un   | der static an                      | d quasi-static act | ion for a | workin | g life of | 100 yea  | rs    |       |       |       |
| Temperature range I:    | $\delta_{	extsf{N0}}$ -factor      | [mm/(N/mm²)]       | 0,011     | 0,012  | 0,012     | 0,013    | 0,014 | 0,014 | 0,015 | 0,015 |
| 40°C/24°C               | $\delta_{N\infty}$ -factor         | [mm/(N/mm²)]       | 0,020     | 0,021  | 0,021     | 0,023    | 0,024 | 0,025 | 0,026 | 0,027 |
| Temperature range II:   | $\delta_{	extsf{N0}}$ -factor      | [mm/(N/mm²)]       | 0,013     | 0,014  | 0,014     | 0,015    | 0,016 | 0,016 | 0,018 | 0,018 |
| 72°C/50°C               | $\delta_{	extsf{N}\infty}$ -factor | [mm/(N/mm²)]       | 0,038     | 0,039  | 0,040     | 0,043    | 0,045 | 0,047 | 0,049 | 0,051 |

<sup>1)</sup> Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor  $\cdot \tau$ ;  $\delta_{N\infty} = \delta_{N\infty}\text{-factor} \ \cdot \ \tau;$   $\tau$ : action bond stress for tension

## Table C17: Displacements under shear load<sup>1)</sup> for all drilling methods

| Anchor size thread | M8                                 | M10               | M12       | M16     | M20  | M24  | M27  | M30  |      |      |
|--------------------|------------------------------------|-------------------|-----------|---------|------|------|------|------|------|------|
| Uncracked and crac | cked concrete unde                 | er static and qua | asi-stati | caction |      |      |      |      |      |      |
| All temperature    | $\delta_{	extsf{V0}}$ -factor      | [mm/kN]           | 0,06      | 0,06    | 0,05 | 0,04 | 0,04 | 0,03 | 0,03 | 0,03 |
| ranges             | $\delta_{	extsf{V}\infty}$ -factor | [mm/kN]           | 0,09      | 0,08    | 0,08 | 0,06 | 0,06 | 0,05 | 0,05 | 0,05 |

<sup>1)</sup> Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V; V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

#### B+BTec Injection System BIS-PE GEN3 for concrete

#### **Performances**

Displacements under static and quasi-static action (threaded rods)

Annex C 15



| Table C18: | Displacements under tension load <sup>1)</sup> in hammer drilled holes (HD), |
|------------|------------------------------------------------------------------------------|
|            | compressed air drilled holes (CD) and with hollow drill bit (HDB)            |

| Anchor size Internal thre | eaded anchor r                     | od                | IG-M6      | IG-M8        | IG-M10      | IG-M12   | IG-M16                                                      | IG-M20 |
|---------------------------|------------------------------------|-------------------|------------|--------------|-------------|----------|-------------------------------------------------------------|--------|
| Uncracked concrete und    | der static and o                   | uasi-static actio | n for a wo | rking life o | of 50 and 1 | 00 years |                                                             |        |
| Temperature range I:      | $\delta_{N0}$ -factor              | [mm/(N/mm²)]      | 0,029      | 0,030        | 0,033       | 0,035    | 0,038                                                       | 0,041  |
| 40°C/24°C                 | $\delta_{N\infty}$ -factor         | [mm/(N/mm²)]      | 0,029      | 0,030        | 0,033       | 0,035    | 0,038<br>0,038<br>0,051<br>0,064<br>0,079<br>0,142<br>0,106 | 0,041  |
| Temperature range II:     | $\delta_{N0}$ -factor              | [mm/(N/mm²)]      | 0,039      | 0,040        | 0,044       | 0,047    | 0,051                                                       | 0,055  |
| 72°C/50°C                 | $\delta_{N\infty}$ -factor         | [mm/(N/mm²)]      | 0,049      | 0,051        | 0,055       | 0,059    | 0,064                                                       | 0,070  |
| Cracked concrete under    | static and qua                     | si-static action  | for a work | ing life of  | 50 and 100  | years    |                                                             |        |
| Temperature range I:      | $\delta_{N0}$ -factor              | [mm/(N/mm²)]      | 0,071      | 0,072        | 0,074       | 0,076    | 0,079                                                       | 0,082  |
| 40°C/24°C                 | $\delta_{	extsf{N}\infty}$ -factor | [mm/(N/mm²)]      | 0,115      | 0,122        | 0,128       | 0,135    | 0,142                                                       | 0,171  |
| Temperature range II:     | δ <sub>N0</sub> -factor            | [mm/(N/mm²)]      | 0,095      | 0,096        | 0,099       | 0,102    | 0,106                                                       | 0,110  |
| 72°C/50°C                 | $\delta_{	extsf{N}\infty}$ -factor | [mm/(N/mm²)]      | 0,154      | 0,163        | 0,172       | 0,181    | 0,189                                                       | 0,229  |

<sup>1)</sup> Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor  $\cdot \tau$ ;  $\delta_{N\infty} = \delta_{N\infty}$ -factor  $\cdot \tau$ ; τ: action bond stress for tension

#### Displacements under tension load<sup>1)</sup> in diamond drilled holes (DD) Table C19:

| Anchor size Internal thr | eaded anchor                       | rod                | IG-M6      | IG-M8      | IG-M10      | IG-M12 | IG-M16                           | IG-M20 |
|--------------------------|------------------------------------|--------------------|------------|------------|-------------|--------|----------------------------------|--------|
| Uncracked concrete un    | der static and                     | quasi-static actio | n for a wo | rking life | of 50 years | i      |                                  |        |
| Temperature range I:     | δ <sub>N0</sub> -factor            | [mm/(N/mm²)]       | 0,012      | 0,012      | 0,013       | 0,014  | 0,014                            | 0,015  |
| 40°C/24°C                | $\delta_{N\infty}$ -factor         | [mm/(N/mm²)]       | 0,019      | 0,019      | 0,020       | 0,022  |                                  | 0,025  |
| Temperature range II:    | δ <sub>N0</sub> -factor            | [mm/(N/mm²)]       | 0,014      | 0,014      | 0,015       | 0,016  | 0,016                            | 0,018  |
| 72°C/50°C                | $\delta_{N\infty}$ -factor         | [mm/(N/mm²)]       | 0,053      | 0,055      | 0,058       | 0,062  | 0,065                            | 0,070  |
| Uncracked concrete un    | der static and                     | quasi-static actio | n for a wo | rking life | of 100 year | 'S     |                                  |        |
| Temperature range I:     | $\delta_{\text{N0}}$ -factor       | [mm/(N/mm²)]       | 0,012      | 0,012      | 0,013       | 0,014  | 0,014                            | 0,015  |
| 40°C/24°C                | $\delta_{	extsf{N}\infty}$ -factor | [mm/(N/mm²)]       | 0,021      | 0,021      | 0,023       | 0,024  | 0,025                            | 0,027  |
| Temperature range II:    | $\delta_{\text{N0}}$ -factor       | [mm/(N/mm²)]       | 0,014      | 0,014      | 0,015       | 0,016  | 0,016                            | 0,018  |
| 72°C/50°C                | $\delta_{N\infty}$ -factor         | [mm/(N/mm²)]       | 0,039      | 0,040      | 0,043       | 0,045  | 0,016<br>0,065<br>0,014<br>0,025 | 0,051  |

<sup>1)</sup> Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$  $\delta_{N\infty} = \delta_{N\infty}$ -factor  $\cdot \tau$ ;  $\tau$ : action bond stress for tension

#### Displacements under shear load<sup>1)</sup> for all drilling methods Table C20:

| Anchor size Inter                                                   | IG-M6                   | IG-M8   | IG-M10 | IG-M12 | IG-M16 | IG-M20 |      |      |  |  |  |
|---------------------------------------------------------------------|-------------------------|---------|--------|--------|--------|--------|------|------|--|--|--|
| Uncracked and cracked concrete under static and quasi-static action |                         |         |        |        |        |        |      |      |  |  |  |
| All temperature                                                     | $\delta_{V0}$ -factor   | [mm/kN] | 0,07   | 0,06   | 0,06   | 0,05   | 0,04 | 0,04 |  |  |  |
| ranges                                                              | $\delta_{ m V}$ -factor | [mm/kN] | 0,10   | 0,09   | 0,08   | 0,08   | 0,06 | 0,06 |  |  |  |

<sup>1)</sup> Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V; V: action shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor · V;

## B+BTec Injection System BIS-PE GEN3 for concrete

#### **Performances**

Displacements under static and quasi-static action (Internal threaded anchor rod)

Annex C 16



| Table C21: | Displacements under tension load <sup>1)</sup> in hammer drilled holes (HD), |
|------------|------------------------------------------------------------------------------|
|            | compressed air drilled holes (CD) and with hollow drill bit (HDB)            |

| Anchor size reinfo                                                                             | orcing bar                         |                | Ø8       | Ø 10    | Ø 12   | Ø 14      | Ø 16   | Ø 20     | Ø 24  | Ø 25  | Ø 28  | Ø 32  |
|------------------------------------------------------------------------------------------------|------------------------------------|----------------|----------|---------|--------|-----------|--------|----------|-------|-------|-------|-------|
| Uncracked concrete under static and quasi-static action for a working life of 50 and 100 years |                                    |                |          |         |        |           |        |          |       |       |       |       |
| Temp range I:                                                                                  | $\delta_{	extsf{N0}}$ -factor      | [mm/(N/mm²)]   | 0,028    | 0,029   | 0,030  | 0,031     | 0,033  | 0,035    | 0,038 | 0,038 | 0,040 | 0,043 |
| 40°C/24°C                                                                                      | $\delta_{	extsf{N}\infty}$ -factor | [mm/(N/mm²)]   | 0,028    | 0,029   | 0,030  | 0,031     | 0,033  | 0,035    | 0,038 | 0,038 | 0,040 | 0,043 |
| Temp range II:                                                                                 | $\delta_{	extsf{N0}}$ -factor      | [mm/(N/mm²)]   | 0,038    | 0,039   | 0,040  | 0,042     | 0,044  | 0,047    | 0,051 | 0,051 | 0,054 | 0,058 |
| 72°C/50°C                                                                                      | $\delta_{N\infty}$ -factor         | [mm/(N/mm²)]   | 0,047    | 0,049   | 0,051  | 0,053     | 0,055  | 0,059    | 0,065 | 0,065 | 0,068 | 0,072 |
| Cracked concrete                                                                               | under statio                       | and quasi-stat | ic actio | n for a | workin | g life of | 50 and | l 100 ye | ears  |       |       |       |
| Temp range I:                                                                                  | $\delta_{	extsf{N0}}$ -factor      | [mm/(N/mm²)]   | 0,069    | 0,071   | 0,072  | 0,073     | 0,074  | 0,076    | 0,079 | 0,079 | 0,081 | 0,084 |
| 40°C/24°C                                                                                      | $\delta_{	extsf{N}\infty}$ -factor | [mm/(N/mm²)]   | 0,115    | 0,122   | 0,128  | 0,135     | 0,142  | 0,155    | 0,171 | 0,171 | 0,181 | 0,194 |
| Temp range II:                                                                                 | $\delta_{N0}$ -factor              | [mm/(N/mm²)]   | 0,092    | 0,095   | 0,096  | 0,098     | 0,099  | 0,102    | 0,106 | 0,106 | 0,109 | 0,113 |
| 72°C/50°C                                                                                      | $\delta_{	extsf{N}\infty}$ -factor | [mm/(N/mm²)]   | 0,154    | 0,163   | 0,172  | 0,181     | 0,189  | 0,207    | 0,229 | 0,229 | 0,242 | 0,260 |

<sup>1)</sup> Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$   $\tau$ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor  $\cdot \tau$ ;

## Table C22: Displacements under tension load<sup>1)</sup> in diamond drilled holes (DD)

| Anchor size reinfo                                                                     | Anchor size reinforcing bar          |                  |          | Ø 10     | Ø 12   | Ø 14     | Ø 16   | Ø 20  | Ø 24  | Ø 25  | Ø 28  | Ø 32  |
|----------------------------------------------------------------------------------------|--------------------------------------|------------------|----------|----------|--------|----------|--------|-------|-------|-------|-------|-------|
| Uncracked concrete under static and quasi-static action for a working life of 50 years |                                      |                  |          |          |        |          |        |       |       |       |       |       |
| Temp range I:                                                                          | $\delta_{	extsf{N0}}$ -factor        | [mm/(N/mm²)]     | 0,008    | 0,009    | 0,009  | 0,01     | 0,011  | 0,012 | 0,013 | 0,013 | 0,014 | 0,015 |
| 40°C/24°C                                                                              | $\delta_{N\infty}$ -factor           | [mm/(N/mm²)]     | 0,018    | 0,018    | 0,019  | 0,020    | 0,021  | 0,024 | 0,027 | 0,027 | 0,028 | 0,031 |
| Temp range II:                                                                         | $\delta_{N0}$ -factor                | [mm/(N/mm²)]     | 0,009    | 0,011    | 0,011  | 0,012    | 0,013  | 0,014 | 0,015 | 0,015 | 0,016 | 0,018 |
| 72°C/50°C                                                                              | $\delta_{	extsf{N}\infty}$ -factor   | [mm/(N/mm²)]     | 0,048    | 0,051    | 0,054  | 0,058    | 0,061  | 0,068 | 0,076 | 0,076 | 0,081 | 0,088 |
| Uncracked concre                                                                       | ete under sta                        | atic and quasi-s | tatic ac | tion for | a work | ing life | of 100 | years |       |       |       |       |
| Temp range I:                                                                          | $\delta_{	extsf{N0}}	extsf{-factor}$ | [mm/(N/mm²)]     | 0,008    | 0,009    | 0,009  | 0,010    | 0,011  | 0,012 | 0,013 | 0,013 | 0,014 | 0,015 |
| 40°C/24°C                                                                              | $\delta_{	extsf{N}\infty}$ -factor   | [mm/(N/mm²)]     | 0,018    | 0,020    | 0,021  | 0,022    | 0,024  | 0,026 | 0,029 | 0,029 | 0,031 | 0,034 |
| Temp range II:                                                                         | $\delta_{	extsf{N0}}	extsf{-factor}$ | [mm/(N/mm²)]     | 0,009    | 0,011    | 0,011  | 0,012    | 0,013  | 0,014 | 0,015 | 0,015 | 0,016 | 0,018 |
| 72°C/50°C                                                                              | $\delta_{	extsf{N}\infty}$ -factor   | [mm/(N/mm²)]     | 0,035    | 0,037    | 0,040  | 0,042    | 0,045  | 0,049 | 0,055 | 0,055 | 0,059 | 0,064 |

<sup>1)</sup> Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$   $\tau$ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ -factor  $\cdot \tau$ ;

## Table C23: Displacements under shear load<sup>1)</sup> for all drilling methods

| Anahay aina yain                                                    | α.                         | Ø 10    | Ø 12 | ~ 4.4        | C 40 | ~ 00 | Ø 24 | Ø 25 | Ø 28 | Ø 32 |      |      |
|---------------------------------------------------------------------|----------------------------|---------|------|--------------|------|------|------|------|------|------|------|------|
| Anchor size rein                                                    | Ø 8                        | w 10    | W 12 | <b>لا</b> لا | Ø 16 | Ø 20 | W 24 | Ø 25 | Ø 28 | Ø 32 |      |      |
| Uncracked and cracked concrete under static and quasi-static action |                            |         |      |              |      |      |      |      |      |      |      |      |
| All temperature                                                     | $\delta_{V0}$ -factor      | [mm/kN] | 0,06 | 0,05         | 0,05 | 0,04 | 0,04 | 0,04 | 0,03 | 0,03 | 0,03 | 0,03 |
| ranges                                                              | $\delta_{V\infty}$ -factor | [mm/kN] | 0,09 | 0,08         | 0,08 | 0,06 | 0,06 | 0,05 | 0,05 | 0,05 | 0,04 | 0,04 |

<sup>1)</sup> Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V; V: action shear load

 $\delta_{V^{\infty}} = \delta_{V^{\infty}} \text{-factor } \cdot V;$ 

## B+BTec Injection System BIS-PE GEN3 for concrete

#### **Performances**

Displacements under static and quasi-static action (rebar)

Annex C 17

Increasing factors for concrete  $\psi_{\mathbf{C}}$ 

for dry and wet concrete (HD; HDB, CD)

for flooded bore hole (HD; HDB, CD)

Installation factor



1,0

1,0

1,2

| Table C24:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Table C24: Characteristic values of tension loads under seismic action (performance category C1) for a working life of 50 and 100 years |                       |                       |             |          |      |           |         |        |        |        |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|-------------|----------|------|-----------|---------|--------|--------|--------|-----|
| Anchor size threaded rod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                         |                       |                       |             |          |      |           |         |        |        |        |     |
| Steel failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                       |                       |             |          |      |           |         |        |        |        |     |
| Characteristic tension resistance N <sub>Rk,s,eq,C1</sub> [kN] 1,0 • N <sub>Rk,s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                         |                       |                       |             |          |      |           |         |        |        |        |     |
| Partial factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                         |                       | γ <sub>Ms,N</sub>     | [-]         |          |      |           | see Ta  | ble C1 |        |        |     |
| Combined pull-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | out and co                                                                                                                              | ncrete failure        |                       |             |          |      |           |         |        |        |        |     |
| Characteristic bodrilled holes (CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                         |                       |                       | concrete C2 | 20/25 in | hamm | er drille | ed hole | s (HD) | , comp | ressed | air |
| I: 40°C/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24°C                                                                                                                                    | Dry, wet concrete and | <sup>τ</sup> Rk,eq,C1 | [N/mm²]     | 7,0      | 7,0  | 8,5       | 8,5     | 8,5    | 8,5    | 8,5    | 8,5 |
| He in the interest of the inte | <u>ម</u> II: 72°C/50°C flooded bore hole                                                                                                |                       |                       |             |          |      |           |         | 7,0    |        |        |     |

[-]

C25/30 to C50/60

# Table C25: Characteristic values of shear loads under seismic action (performance category C1)

 $\gamma_{\mathsf{inst}}$ 

|                                              |                    | •    |                                         |     |     |     |     |     |     |  |
|----------------------------------------------|--------------------|------|-----------------------------------------|-----|-----|-----|-----|-----|-----|--|
| Anchor size threaded rod                     |                    | M8   | M10                                     | M12 | M16 | M20 | M24 | M27 | M30 |  |
| Steel failure                                |                    |      |                                         |     |     |     |     |     |     |  |
| Characteristic shear resistance (Seismic C1) | $V_{Rk,s,eq,C1}$   | [kN] | ] 0,70 • V <sup>0</sup> <sub>Rk,s</sub> |     |     |     |     |     |     |  |
| Partial factor                               | $\gamma_{Ms,V}$    | [-]  | see Table C1                            |     |     |     |     |     |     |  |
| Factor for annular gap                       | $\alpha_{\sf gap}$ | [-]  | 0,5 (1,0) <sup>1)</sup>                 |     |     |     |     |     |     |  |

<sup>&</sup>lt;sup>1)</sup> Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended.

| B+BTec Injection System BIS-PE GEN3 for concrete                                                                                                                   |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of tension and shear loads under seismic action (performance category C1) for a working life of 50 and 100 years (threaded rod) | Annex C 18 |



1,2

| Table C26: | Characteristic values of tension loads under seismic action      |
|------------|------------------------------------------------------------------|
|            | (performance category C1) for a working life of 50 and 100 years |

| Ancho                                                                                                                                                                   | r size reinforcir    | ng bar                 |                         |         | Ø8                                                           | Ø 10 | Ø 12 | Ø 14 | Ø 16    | Ø 20                   | Ø 24 | Ø 25 | Ø 28 | Ø 32 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|-------------------------|---------|--------------------------------------------------------------|------|------|------|---------|------------------------|------|------|------|------|
| Steel f                                                                                                                                                                 | ailure               |                        |                         |         |                                                              |      |      |      |         |                        |      | 1    |      |      |
| Charac                                                                                                                                                                  | cteristic tension re | esistance              | N <sub>Rk,s,eq,C1</sub> | [kN]    |                                                              |      |      |      | 1,0 • A | s · f <sub>uk</sub>    | 1)   |      |      |      |
| Cross                                                                                                                                                                   | section area         |                        | A <sub>s</sub>          | [mm²]   | 50                                                           | 79   | 113  | 154  | 201     | 314                    | 452  | 491  | 616  | 804  |
| Partial                                                                                                                                                                 | factor               |                        | $\gamma_{Ms,N}$         | [-]     |                                                              |      |      |      | 1,      | <b>4</b> <sup>2)</sup> |      | •    | •    | •    |
| Combined pull-out and concrete failure                                                                                                                                  |                      |                        |                         |         |                                                              |      |      |      |         |                        |      |      |      |      |
| Characteristic bond resistance in cracked and uncracked concrete C20/25 in hammer drilled holes (HD), compressed air drilled holes (CD) and with hollow drill bit (HDB) |                      |                        |                         |         |                                                              |      |      |      | air<br> |                        |      |      |      |      |
| rature<br>ge                                                                                                                                                            | l: 40°C/24°C         | Dry, wet               | <sup>τ</sup> Rk,eq,C1   | [N/mm²] | 7,0                                                          | 7,0  | 8,5  | 8,5  | 8,5     | 8,5                    | 8,5  | 8,5  | 8,5  | 8,5  |
| Temperature<br>range                                                                                                                                                    | II: 72°C/50°C        | flooded bore<br>hole   | <sup>τ</sup> Rk,eq,C1   | [N/mm²] | <sup>2</sup> ] 6,0 6,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7,0 7 |      |      |      |         |                        |      | 7,0  |      |      |
| Increas                                                                                                                                                                 | sing factors for co  | oncrete ψ <sub>C</sub> | C25/30 to               | C50/60  |                                                              |      |      |      | 1       | ,0                     |      | •    | •    |      |
| Install                                                                                                                                                                 | ation factor         |                        | •                       |         |                                                              |      |      |      |         |                        |      |      |      |      |
| for dry and wet concrete (HD; HDB, CD)                                                                                                                                  |                      |                        |                         |         |                                                              |      |      |      | 1       | ,0                     |      |      |      |      |
| for floo                                                                                                                                                                | ded bore hole (H     | ID: HDB CD)            | <sup>γ</sup> inst       | [-]     | 12                                                           |      |      |      |         |                        |      |      |      |      |

<sup>1)</sup> fuk shall be taken from the specifications of reinforcing bars

for flooded bore hole (HD; HDB, CD)

#### Table C27: Characteristic values of shear loads under seismic action (performance category C1)

| Anchor size reinforcing bar     | Ø8                      | Ø 10  | Ø 12                                                  | Ø 14 | Ø 16 | Ø 20 | Ø 24 | Ø 25 | Ø 28 | Ø 32 |     |     |
|---------------------------------|-------------------------|-------|-------------------------------------------------------|------|------|------|------|------|------|------|-----|-----|
| Steel failure                   |                         |       |                                                       |      |      |      |      |      |      |      |     |     |
| Characteristic shear resistance | V <sub>Rk,s,eq,C1</sub> | [kN]  | 0,35 • A <sub>s</sub> • f <sub>uk</sub> <sup>1)</sup> |      |      |      |      |      |      |      |     |     |
| Cross section area              | A <sub>s</sub>          | [mm²] | 50                                                    | 79   | 113  | 154  | 201  | 314  | 452  | 491  | 616 | 804 |
| Partial factor                  | γ <sub>Ms,</sub> ∨      | [-]   | 1,5 <sup>2)</sup>                                     |      |      |      |      |      |      |      |     |     |
| Factor for annular gap          | $lpha_{\sf gap}$        | [-]   | 0,5 (1,0) <sup>3)</sup>                               |      |      |      |      |      |      |      |     |     |

<sup>1)</sup> fuk shall be taken from the specifications of reinforcing bars

| B+BTec Injection System BIS-PE GEN3 for concrete                                                                                                            |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of tension and shear loads under seismic action (performance category C1) for a working life of 50 and 100 years (rebar) | Annex C 19 |

<sup>2)</sup> in absence of national regulation

<sup>2)</sup> in absence of national regulation

<sup>3)</sup> Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended.

for dry and wet concrete (HD; HDB, CD)

for flooded bore hole (HD; HDB, CD)

English translation prepared by DIBt



1,0

1,2

| Table C28: | Characteristic values of tension loads under seismic action      |  |  |  |  |  |
|------------|------------------------------------------------------------------|--|--|--|--|--|
|            | (performance category C2) for a working life of 50 and 100 years |  |  |  |  |  |

| Anchor size threaded rod                                                                                             |                            | M12          | M16          | M20             | M24          |            |
|----------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|--------------|-----------------|--------------|------------|
| Steel failure                                                                                                        |                            | •            |              |                 |              |            |
| Characteristic tension resistance,<br>Steel, strength class 8.8<br>Stainless Steel A4 and HCR,<br>Strength class ≥70 | N <sub>Rk,s,eq,C2</sub>    | [kN]         |              | 1,0 •           | $N_{Rk,s}$   |            |
| Partial factor                                                                                                       | γ <sub>Ms,N</sub>          | [-]          | see Table C1 |                 |              |            |
| Combined pull-out and concrete fa                                                                                    | ilure                      |              |              |                 |              |            |
| Characteristic bond resistance in crac<br>drilled holes (CD) and with hollow dri                                     |                            | concrete C20 | /25 in hamm  | er drilled hole | s (HD), comp | ressed air |
| be a li 40°C/24°C Dry, wet concrete flooded to hole                                                                  | 1 (0) 00 00                | [N/mm²]      | 5,8          | 4,8             | 5,0          | 5,1        |
| flooded by hole                                                                                                      | oore T <sub>Rk,eq,C2</sub> | [N/mm²]      | 5,0          | 4,1             | 4,3          | 4,4        |
| ncreasing factors for concrete ψ <sub>C</sub>                                                                        | C25/30 to                  | C50/60       | 1,0          |                 |              |            |

[-]

# Table C29: Characteristic values of shear loads under seismic action (performance category C2)

 $\gamma_{\text{inst}}$ 

| Anchor size threaded rod                                                                                          |                         |      | M12          | M16    | M20                 | M24 |
|-------------------------------------------------------------------------------------------------------------------|-------------------------|------|--------------|--------|---------------------|-----|
| Steel failure                                                                                                     |                         |      |              |        |                     |     |
| Characteristic shear resistance<br>Steel, strength class 8.8<br>Stainless Steel A4 and HCR,<br>Strength class ≥70 | V <sub>Rk,s,eq,C2</sub> | [kN] |              | 0,70 • | V <sup>0</sup> Rk,s |     |
| Partial factor                                                                                                    | $\gamma_{Ms,V}$         | [-]  | see Table C1 |        |                     |     |
| Factor for annular gap                                                                                            | $\alpha_{\sf gap}$      | [-]  | 0,5 (1,0)1)  |        |                     |     |

<sup>1)</sup> Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is recommended.

| B+BTec Injection System BIS-PE GEN3 for concrete                                                                                                                   |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of tension and shear loads under seismic action (performance category C2) for a working life of 50 and 100 years (threaded rod) | Annex C 20 |



| Table C30: Displacements under tension load (threaded rod)                    |                       |      |      |      |      |      |  |
|-------------------------------------------------------------------------------|-----------------------|------|------|------|------|------|--|
| Anchor size threaded rod M12 M16 M20 M24                                      |                       |      |      |      |      |      |  |
| Uncracked and cracked concrete under seismic action (performance category C2) |                       |      |      |      |      |      |  |
| All temperature                                                               | $\delta$ N,eq,C2(DLS) | [mm] | 0,21 | 0,24 | 0,27 | 0,36 |  |
| ranges                                                                        | $\delta$ N,eq,C2(ULS) | [mm] | 0,54 | 0,51 | 0,54 | 0,63 |  |

## Table C31: Displacements under shear load (threaded rod)

| Anchor size threaded rod                                                      |                            |      | M12 | M16 | M20 | M24  |
|-------------------------------------------------------------------------------|----------------------------|------|-----|-----|-----|------|
| Uncracked and cracked concrete under seismic action (performance category C2) |                            |      |     |     |     |      |
| All temperature                                                               | $\delta_{ m V,eq,C2(DLS)}$ | [mm] | 3,1 | 3,4 | 3,5 | 4,2  |
| ranges                                                                        | $\delta_{V,eq,C2(ULS)}$    | [mm] | 6,0 | 7,6 | 7,3 | 10,9 |

| B+BTec Injection System BIS-PE GEN3 for concrete                                          |            |
|-------------------------------------------------------------------------------------------|------------|
| Performances Displacements under seismic action (performance category C2) (threaded rods) | Annex C 21 |